
Tracking FreeBSD in a Commercial Setting

M. Warner Losh
iXsystems, Inc

Broomfield, CO
imp@freebsd.org

October 10th, 2010

Abstract

The FreeBSD project[1] publishes two lines of source
code: current and stable. All changes must first be com-
mitted to current and then are merged into stable. Com-
mercial organizations wishing to use FreeBSD in their
products must be aware of this policy. Four different
strategies have been developed for tracking FreeBSD
over time:

• Stock FreeBSD: A company runs only unmodi-
fied releases of FreeBSD.

• Grab and Go: A company imports a specific ver-
sion of FreeBSD’s sources once and then never
imports new code from FreeBSD again.

• Stable Branch Tracking: A company im-
ports new stable branches over time, adding its
own changes to that branch, as well as tracking
FreeBSD’s changes to the branch.

• Own Branch: A company tracks FreeBSD’s
CURRENT branch, adding to it their changes and
creating their own stable branch as it sees fit.

This paper catalogs the methods different companies
have used and explores the pros and cons of each.

1 Problem Statement

While many companies have based their products on
FreeBSD, little organized exists to guide new compa-
nies’ integration of FreeBSD. They have many choices
in how they could adapt FreeBSD’s code. For some,
FreeBSD’s binary releases can be used unmodified.
Others require extensive modification and additions to

FreeBSD. Most companies fall somewhere between
these extremes, but little formal documentation exists to
guide them. In the other direction, companies need in-
formation about the management of contributions back
to the community with guidance on when, what and how
to contribute.

FreeBSD provides an excellent base technology on
which to base products. It is a proven leader in perfor-
mance, reliability, and scalability[2][3]. Its IEEE 802.11
wireless technology leads the industry[4]. The technol-
ogy also offers a very business friendly license that al-
lows companies to pick and choose which changes they
wish to contribute to the community rather than forcing
all changes to be contributed back, or attaching other un-
desirable license conditions to the code.

However, the FreeBSD project does not focus on inte-
gration of its technology into customized commercial
products. Instead, the project focuses on producing a
good, reliable, fast and scalable operating system and
associated packages. The project maintains two lines of
development: a current branch, where the main devel-
opment of the project takes place, and a stable branch
which is managed for stability and reliability. While the
project maintains documentation on the system, includ-
ing its development model, relatively little guidance has
been given to companies in how to integrate FreeBSD
into their products with a minimum of trouble.

Developing a sensible strategy to deal with both these
portions of FreeBSD requires careful planning and anal-
ysis. FreeBSD’s lack of guidelines to companies leaves
it up to them to develop a strategy. FreeBSD’s devel-
opment model differs from some of the other Free and
Open Source (FOSS) projects. People familiar with
those systems often discover that methods that were well
suited to them may not work as well with FreeBSD’s de-
velopment model. These two issues cause many compa-
nies to make poor decisions without understanding the
problems that lie in their future.



Companies looking for formal guidance on integrating
FreeBSD into their products will find little organized in-
formation. The FreeBSD handbook[5] documents the
development process, but gives no guidance on how to
integrate FreeBSD into a product. Internet searches re-
veal several email threads on the topic, but the informa-
tion is haphazard and contradictory.

2 FreeBSD Branching

The FreeBSD development model strikes a balance be-
tween the needs of developers and the needs of users.
Developers prefer to have one set of sources that they
can change arbitrarily and not have to worry about the
consequences. Users prefer to have a stable system that
is compatible with the prior systems. These two desires
are incompatible and can cause friction between devel-
opers and users.

FreeBSD solves these problems by providing two ver-
sions of its code. The developer version of the code is
called “FreeBSD-current,” “CURRENT,” or “current”.
This contains the latest code, including work in progress
and other code that might not be completely ready for
end users. The quality of the current branch varies over
time as new code is committed and bug fixes are made.
This works well for the developers, but using current in
product requires extreme care and the project generally
against using it there. New stable branches are created
by the release engineering team from the current branch
on a regular basis.

The user version of the code is called “FreeBSD-stable,”
or just “stable.” The release engineering team creates
this branch every few years from the current tree. Be-
fore the branch is created, the release engineer manages
the current tree towards stability: the rate of new features
going in is slowed, and bug fixing is generally encour-
aged. These branches are numbered sequentially and
named “RELENG X”, the most recent branch is called
“RELENG 7.” Stable branches are well tested before re-
leases are created from them. Once released, only well
tested patches from the current branch are allowed to be
merged into the branch. Over the life of the branch, the
Application Programming Interface (API) and Applica-
tion Binary Interface (ABI) are stable and only changed
in an upwardly compatible manner. Users can therefore
upgrade from point to point within the branch with rel-
ative easy. Stable branches tend to have a lifetime of
about three to six years.

In addition to the stable branch, FreeBSD creates re-
leases from time to time from the stable branch. Re-
leases have an even higher level of testing than the sta-
ble branch, and includes integrated packages built from
the FreeBSD ports tree[6]. After the release, a branch is
maintained to incorporate security fixes and critical bug
fixes. Users can upgrade their release to the latest ver-
sion of that release’s branch, or to newer releases by re-
building sources or with a binary update program. While
technically different from the stable branch, the rest of
the paper will lump all these branches into the parent
stable branch.

The FreeBSD project defined its ideal release and
branching strategy. Every two years, the project re-
leases a new major version and creates a new RELENG
branch. The project releases minor versions on the RE-
LENG branch every three to six months for about two
years. After this active phase, the RELENG branch is
maintained for critical bug fixes and security issues for
about another year. After about three years, the branch is
then abandoned in favor of the newer RELENG branch.
Figure 3 shows this graphically. The horizontal axis is
time, measured in years. The vertical access is cumula-
tive change to each branch over time.

Figure 4 shows the actual branching and release history.
This data was collected from the subversion repository.
There are three features of this graph that need to be
called out. The first one is that branches tend to live
beyond the three year “ideal” case. Second, the branch-
ing is less regular than the ideal plan suggests. After the
5.x misstep, we’ve branched on time for 6.x, 7.x and are
on track for an 8.x branch. Third, although it looks like
there’s a flattening out of commit rates in the project,
the graphs is misleading because it omits data. In 2002
the project started using perforce for work in progress.
In 2008, the project moved from CVS to subversion for
Source Code Management (SCM), and started to move
work in progress from perforce to subversion. Figure 5
shows these additional changes, which shows where the
apparently “missing” commits in Figure 4 have gone.

The FreeBSD ports system (which is used to gener-
ate the packages that appear in FreeBSD’s releases) is
not branched at all. Instead, it supports both the cur-
rent branch, as well as the active stable branches of the
project. For each release, the tree is tagged so that it can
be reproduced in the future if necessary. These policies
are different than the main source tree. Tracking ports is
beyond the scope of this paper.



3 Branching Choices

A wide range of companies use FreeBSD in their prod-
ucts today. On the simplest end, companies load
FreeBSD onto boxes that they ship. On the most com-
plex end, companies modify FreeBSD extensively to
make it fit their needs. Over the years four different ap-
proaches to tracking FreeBSD have evolved.

The simplest method uses the stock FreeBSD releases
unmodified. Companies download FreeBSD at its re-
lease points and make no changes to the base software.
They just change the configuration settings and install
packages. They typically don’t track the sources and
only install binary packages from FreeBSD’s web pages.
Some companies keep the sources to FreeBSD in es-
crow for regulatory compliance. Most companies move
from release to release as necessary, or install security
updates.

The next simplest method involves grabbing a release of
FreeBSD and using that as a basis for their product. The
company makes whatever modifications necessary for
their product. The company doesn’t update the sources
to newer versions of FreeBSD. Almost always, the com-
pany doesn’t contribute any of its changes back to the
FreeBSD project. Effectively, they have created a fork
of FreeBSD.

Companies often set up repositories of FreeBSD stable
branches. In this model, the tip of a stable branch (or
the latest release point) is imported into some SCM. The
company makes fixes and improvements to its private
branch. They also import newer versions of FreeBSD
from the parent stable branch. Many companies loop
back changes to FreeBSD to reduce the number of
changes they must maintain and to simplify their up-
grade path.

The most complicated method mirrors FreeBSD’s devel-
opment process. The company imports some version of
the FreeBSD development branch. Updates happen fre-
quently, often automatically daily or weekly. They make
changes to FreeBSD in this mainline of development.
Rather than using FreeBSD’s stable branches, the com-
pany will decide when and where to branch its version.
Once branched, it will control what fixes are merged into
its branch.

3.1 Stock FreeBSD

By far the simplest way to use FreeBSD is to download
releases and use them unmodified or with the latest secu-
rity fixes. They layer packages on top of FreeBSD, typi-
cally a mix of stock packages from the release and their
own additional scripts or programs. They customize
and configure the system using standard tuning knobs
in FreeBSD’s configuration files. The focus of these
companies is to have a system that they can deploy and
use for a particular purpose. Most commercial users of
FreeBSD use this method. Some of these companies will
also compile customized kernel configurations. Some
companies will also build custom versions of FreeBSD
using the NanoBSD or TinyBSD build scripts.

Customization of the system is typically tracked in some
kind of SCM system. These customizations include the
/etc/rc.conf file (which controls most of the global
settings for the system), as well as configuration files
and other data used by other programs in the system.
The number of files that a company needs to manage
using this method is typically less than 20.

Apart from security updates, these companies typically
upgrade only when new features or hardware support
forces them to upgrade. Once they find a stable ver-
sion they stick with it until they need something from a
newer version. This could be support for newer hard-
ware (drivers or architectures), new application level
features such as threading support, or performance im-
provements for their workloads. Updates via freebsd-
upgrade(8) are common for machines performing ser-
vices, but fairly rare for deployed systems.

FreeBSD meets the needs of these companies fairly well.
They don’t require additional features or bug fixes not
in the current releases. They don’t need to optimize
FreeBSD for any given platform beyond what the stan-
dard system tunables provide for them. The main ad-
vantage for these companies is that FreeBSD is a drop
in solution. There’s very little overhead necessary to get
their machines and applications running and FreeBSD’s
standard install tools can be used to create images for
their products (if they even need separate images at all).
Some of these companies participate in the community
and contribute bug reports, bug fixes, documentation or
user support to the community.



3.2 Grab and Go

Another easy way to use FreeBSD sources is the grab
and go method. In this method, the company grabs
FreeBSD and modifies it for their needs. The company
doesn’t attempt to track changes in FreeBSD and pulls in
little or no bug fixes. They layer in their own build and
packaging system often times. Sometimes they port to
a new architecture. FreeBSD typically is the base for a
more extensive application or appliance which the com-
pany has total control over.

There are a few advantages to this method. The company
can concentrate on making their product work without
new versions distracting its engineers. The company
manages its risk by doing everything themselves since
external changes won’t affect them at all. The company
can keep any information about what they are doing
from being inferred by competitors looking at their bug
submissions to FreeBSD. The company’s employees are
not distracted by interactions with the FreeBSD commu-
nity. Without these distractions, the company can bring
its product to market more quickly, at least in theory.

However, there are many disadvantages to this method.
The biggest problem is older versions of FreeBSD are
poorly supported by the community. If there are prob-
lems in the base that require community involvement to
solve, the company may have difficulty finding users in
the community that care enough about the old release to
help them. Most of the active members in the commu-
nity use only recent versions, so are unable to help out
with problems in older versions. Experience over the
years has shown that community support can often save
many hours troubleshooting time. Often times, interac-
tion with the community on problems for recent releases
of the software can save tremendous amounts of time for
the company’s employees because they can leverage the
knowledge of others who have had similar problems.

Second, bug fixes in newer version of FreeBSD can be
difficult to back port since the fixes often depend on
other fixes. This is not a big problem when the software
is relatively recent, but can be a big problem if FreeBSD
is on a new major version.

Companies often times think they are in total control of
the hardware platform, but in reality this is a mistaken
assumption. Hardware platforms are made of up chips
that one buys from manufacturers. These chips go ob-
solete at an alarming rate sometimes, forcing changes to
the underlying hardware to even be able to continue to
build it. These new chips often times require changes to

the drivers to work optimally. Just as often, others in the
community have used the newer parts and have migrated
the necessary changes into FreeBSD. Companies using
the grab and go method often must rework these changes
to fit the older version of FreeBSD they are using.

Some companies have managed to start out with this
method and later transition to one of the other methods
described in this paper. One is even rumored to have
recently completed the jump from FreeBSD 2.1.6 (re-
leased in 1996) to FreeBSD 6.2 (released in 2008) and
are now using the stable branch tracking method de-
scribed below. This method is viable when the time lines
are relatively short, but becomes difficult to sustain over
more than a few years.

3.3 Stable Branch Tracking

One nice feature of FreeBSD’s stable branches is their
stability. The FreeBSD project manages the branch to
ensure this stability by limiting the number of changes
to the branch. Almost all changes must be proven in
“CURRENT” for at least two weeks before being eligi-
ble for merging to a stable branch. All APIs and ABIs
are managed to minimize incompatible changes. The
stable branch almost always builds and rarely has seri-
ous problems. The stable branch tracking strategy takes
advantage of these features.

Companies using this approach import a suitable ver-
sion of FreeBSD’s stable branch. Typically, they import
it into a SCM using the SCM’s “vendor branch” fea-
tures. A private branch is then created from this “vendor
branch” where bug fixes found by the company’s engi-
neers are committed. The company makes their product
releases from this private branch. Over time, new ver-
sion can be imported into the vendor branch and merged
into the private branch.

This separation offers many benefits. First, it isolates the
company from change in the FreeBSD project. Since the
importing and merging operations are under the control
of the company, they can choose when to do them. Test-
ing can be done in side branches for the stability of a
candidate import as well. These tasks can be done as re-
sources allow. The importing can also be automated via
a cron(8) job.

Second, it allows for easier patch management since
the company’s changes are isolated from FreeBSD’s
changes. The SCM tracks all changes, so a record
of when and why changes were made is kept. The



SCM can be used to generate patches to be submitted
to FreeBSD. With frequent updates, and the cooperation
of a FreeBSD committer1, the company can minimize
differences to stock FreeBSD, help the community with
bug fixes and benefit from code reviews of submitted
changes to improve patches.

Third, it allows “cherry picking” fixes from many
sources. One can upgrade a small portion of the tree to a
newer stable version, to a “CURRENT” version, or even
to patches posted in a mailing list. This allows com-
panies that need to be on the bleeding edge for some
hardware to use that hardware and leverage work done
elsewhere in the project to support the hardware without
needing to take all changes to the tree to get that support
in many cases.

Forth, this method leverages the extensive release engi-
neering that is performed on the stable branch on an on-
going basis. Because the branch is managed, and the fo-
cus of the project near releases, its quality remains high,
limiting the risk for pulling from this branch. Since the
APIs and ABIs are carefully managed for compatibility
in the stable branch, fixes from newer versions of the
branch very often are “drop in” compatible with what-
ever version of stable is in use at the company at the
moment.

Finally, since modern SCMs allow for easy branching,
the merging of new versions can be done on a branch
of the mainline. The stability of the APIs in the branch
makes this process easy, and the branches allow for test-
ing before merging into the mainline. Branches can also
be used to pin different projects to a specific point in
time with only critical fixes applied.

As new stable branches of FreeBSD become available,
this process can be repeated for them in a separate mod-
ule or directory in the SCM. Moving from one stable
branch to another can also be used as an opportunity to
examine what patches may make sense to contribute to
FreeBSD to help ease the burden of moving from branch
to branch in the future, and to help keep the project
strong.

There are a few disadvantages for this approach. First, to
fully leverage the FreeBSD community, it is desirable to
push back bug fixes to the community in a timely fash-
ion. When this isn’t done, as is often the case when dead-
lines are tight, the chore up upgrading increases because
one must bring forward all of the changes to the system.
Second, if the company makes extensive changes that

1An individual with commit access to the FreeBSD repository.

aren’t merged back into FreeBSD and want to migrate
to the next major version, they will need to redo their
changes after the next major branch is created. If they
are in an area of FreeBSD that has changed between the
two branches, this can take quite a bit of time and effort.

6

COMPANY 8? ? ?

RELENG 8?

6.0
?

6.1
?

6.2

Figure 1: Code Flow between FreeBSD RELENG 8 and
Company’s version of 8.x

Figure 1 shows this graphically. This figure shows an
idealized flow of patches into the company tree and
back to FreeBSD.2 The branches are shown as flat
lines, rather than a graph of the number changes to the
branches like Figures 3 and 4 presented above. The
downward arrows pointing to the RELENG branch rep-
resent FreeBSD releases from that branch. The arrows
from the RELENG branch to the COMPANY branch
represent merges of code from FreeBSD into the com-
pany’s repository. The arrows from COMPANY to RE-
LENG represent patches that have successfully been
contributed back into FreeBSD and have been merged
into FreeBSD’s RELENG tree. Notice that FreeBSD re-
leases and code integrations from the RELENG tree can
be decoupled.

3.4 Own Branching

Another way to keep current in FreeBSD is to track
FreeBSD “current.” Most developers use perforce or
subversion to implement this and find that it works
well. This method follows that practice, and adds stable
branches, akin to FreeBSD’s stable branches in concept,
but not tracking any specific FreeBSD release.

Similar to what’s described in the Stable Branch Track-
ing section, the company imports FreeBSD “current”
into a vendor branch. The company creates a develop-
ment branch where they commit changes to FreeBSD
to. The vendor branch is updated from time to time, typ-
ically automatically. Merging the new FreeBSD into the
company’s private branch happens as time and resources
permit. This method automatically gives developers in

2For simplicity, this fgture neglects to picture the required trip
through FreeBSD current required for all patches to be committed to
stable branches.



the company an easy way to generate patches to inte-
grate into FreeBSD.

The company also emulates FreeBSD’s branching prac-
tices. When the tree is in a good state to branch, pos-
sibly driven by delivery schedules for its end products,
the company branches their own stable branch from their
current branch. They merge bug fixes and new features
from their current branch into this stable branch and
build products from this stable branch.

The main advantage of this approach is that it is eas-
ier to keep current with FreeBSD than the stable branch
tracking approach. To generate patches, a simple diff(3)
between the FreeBSD sources and the company sources
will generate the patches. As patches are merged with
FreeBSD, the next pull will automatically include those
changes and the delta between the company’s sources
and FreeBSD’s will drop. By controlling the branch-
ing times, there’s no need to wait for FreeBSD to cre-
ate new a stable branch, so the company can drive re-
leased schedules more easily than companies tracking
stable branches.

The main disadvantage of this approach is that the
company loses the work done by the FreeBSD com-
munity to keep its stable branches stable and useful.
Since there is no connection between the company’s
stable tree and FreeBSD’s stable tree, improvements to
FreeBSD’s stable branch aren’t automatically reflected
in the company’s stable branch. An engineer will need
to watch changes going into either the current branch
from FreeBSD, or into FreeBSD’s stable tree and man-
ually pull them into their own stable branch. Typically,
there are on the order of 100-200 commits to a FreeBSD
stable branch a month, so this load can be quite large. In
addition, except around the time a new branch is cut in
FreeBSD, FreeBSD’s current branch may have periods
of instability and it can be quite difficult to know when a
good time to branch might be as many of the stability or
quality problems that are in FreeBSD’s current branch
often lay undiscovered for months or years because it
doesn’t get the intensity of testing that a FreeBSD stable
branch receives.

In talking to different companies about how they imple-
ment this, they use many variations on this method. The
ones that merge early and often report many advantages:
easier to track down problems; easier to integrate in
faster moving parts of FreeBSD; small amount of work
often seems easier to schedule than one big chunk of
work. The disadvantage of this comes when there’s an
incompatible change in FreeBSD that takes more time
than the simple merge. If you have a fairly junior per-

son doing the merging, they can have problems at these
events. Companies report that having a senior person
closely supervising the junior person works well to help
smooth over these events.

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

-
�

-
�

-
�

@
@@R

FreeBSD-current

Company Current

Company Stable

Figure 2: Relationship between FreeBSD-current and
company branches

Figure 2 shows this graphically. This figure shows an
idealized flow of patches into the company tree and
back to FreeBSD. The two parallel current branches
are shown diagonally, with the company’s custom sta-
ble branch shown horizontally, much like Figures 1 and
2 presented above. No FreeBSD release points are in-
cluded, since they are largely irrelevant to the method.
The exact delta between the two current branches is also
abstracted out, as this will ebb and flow over time and
needlessly complicates the graph. The arrows represent
changes being merged from one branch to another, ei-
ther between the two current branches, or from the com-
pany’s current branch to its stable branch.

4 SCM Tools

Managing the change for any of these methods can be
a challenge. Modern Source Code Management (SCM)
tools can help. There are two main types of SCM in
use today. Centralized SCMs such as perforce, CVS and
svn, and distributed SCMs such as svk, Mecurial (hg)
and git. A complete tutorial on all these technologies is
beyond the scope of this paper. However, methods for
using some of these tools have been well documented.
They will be presented here, with references to the orig-
inal documentation as a resource to the reader.

4.1 svk

The svk[7] program is a decentralized version control
system built on top of subversion[8]. Its primary purpose
in life is to provide a detached mode of operation for



subversion users, as well as providing more intelligent
algorithms for merging changes between branches.

John Baldwin has an excellent writeup on how to use
svk to mange what he calls FooBSD[9]. In the technical
works, “foo” is a generic meta variable that substitutes
to anything. This allows a high level of automation for
users trying to track the FreeBSD tree. While John’s
write up is centered on the “stable branch” method de-
scribed above, it can easily be adapted to the “own
branch” method as well.

4.2 git svn

git[10] is another distributed version control system. It
was originally written by Linus Torvalds of Linux fame.
It has heavy use in the Linux community, and known
by many users in that community. It offers a different
approach to version control synchronization than svk.

A complete tutorial of git is beyond the scope of this
paper. The author notes that the documentation on how
to use git svn[11] is extensive and easy to understand.

5 Acknowledgments

I would like to thank the crew at Timing Solutions: Ben
Mesander, John Hein, Patrick Schweiger, Steve Passe,
Marc Butler, Matthew Phillips, and Barb Dean for their
insight and implementation of the ’Stable Branch Track-
ing’ method described in this paper. We deployed it
across 4 major versions of FreeBSD.

I would like to thank Julian Elischer for the many con-
versations that we have had about development method.
He provided much of the input into the ’Own Branching’
section.

I would like to acknowledge many others who con-
tributed to the descriptions of the “grab and go” method
on the condition of anonymity.

I’d like to thank John Baldwin for providing the commu-
nity his experience with FooBSD.



References

[1] FreeBSD Home Page. n.d. FreeBSD Project. May 2009. http://www.freebsd.org/.

[2] MySQL Database performance. June 2008. The FreeBSD Project. May 2009.
http://people.freebsd.org/ kris/scaling/mysql.html.

[3] Introducing FreeBSD 7.0. October 2007. The FreeBSD Project. May 2009.
http://people.freebsd.org/ kris/scaling/7.0

[4] Wireless Networking in the Open Source Community. May 2006. The FreeBSD Project. May 2009.
http://people.freebsd.org/ sam/SAN2006-WIRELESS.pdf.

[5] FreeBSD Handbook. n.d. FreeBSD Doc Project. May 2009.
http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/.

[6] Installing Applications: Packages and Ports. n.d. FreeBSD Doc Project. May 2009.
http://www.freebsd.org/doc/en/books/handbook/ports.html.

[7] The SVK version control system. n.d. Best Practices. July 2010. http://svk.bestpractical.com/view/HomePage.

[8] Apache Subversion. n.d. Apache Foundation. July 2010. http://subversion.apache.org/.

[9] Using svk and svn to Maintain a FooBSD. n.d. July 2010.
http://blogs.freebsdish.org/jhb/2009/05/26/using-svk-foobsd/.

[10] Git - Fast Version Control. n.d. github hosting. July 2010. http://git-scm.com/.

[11] git-svn(1) Manual Page. n.d. kernel.org. July 2010.
http://www.kernel.org/pub/software/scm/git/docs/git-svn.html.



Figure 3: Idealized branching model



Figure 4: Actual FreeBSD branching history



Figure 5: Commits to all release branches, FreeBSD-current and other development branches


