
Distributed Ports Builds
in

OpenBSD

Marc Espie (espie@openbsd.org)
october 2010, sunday 10

Note

 The actual slides are available from
 http://www.openbsd.org/papers/

In the beginning

 there was nothing

 and then Nikolay Sturm wrote the old dpb in 2004

 no multi-core machines
 distribute builds on sparcs

 very slow and reliable, retries things every time

Meanwhile

 pkg_add happened

 if you weren’t there this morning, too bad...

 generic framework for dealing with dependencies

 and multi-core laptops

Accidents

 lots of static information in the ports tree

 we check a lot of stuff without building

 introspection (make dump-vars)

 ... used for sqlports

New dpb

 happened more or less last winter

 start building as soon as we can

 Practical design

 old dpb was annoying to set up

 because it takes so long to start

New dpb: fast as hell

 as soon as you start it, it builds stuff

 dependencies are computed "as another job"

 uses partial information to figure out ports it can build

Separate ports in categories

 to-build: stuff to be built eventually

 queue: stuff that CAN be built (dependencies accounted for)

 packages: stuff that was built

As soon as queue fills up, we start building.

 Keep queue happy

 if a core is free, we want to build stuff

Maximal parallelism

 Avoid core starvation
 do most interesting dependencies first

 ... but
 OpenOffice will fuck you up !

 Other cores are twiddling their thumbs

 OpenOffice takes an extra 6 hours to build

Feedback from previous builds

 Stuff that took long to build will take long to build

 So use build times to direct queues

 Largest ports build first

 Dependencies matter

 Weigh each port according to stuff that depends on it

 Simply sum everything

 Good enough

 Supernatural insights

Examples

CS Majors

 ... go away
 NP-complete problem

 but the ports tree is special

 enough ports with no dependencies to keep us busy

 enough small ports to fill the gaps

 doesn’t work for non-bulk
 starvation will happen

Multiple machines

 Treat them as equal

 and stuff breaks
 OpenOffice fucks you up, again

 don’t build big stuff on the old slow laptop

Physicist approach

 Annotate each core with a "speed factor"

 Approximation of processor speed (many cores)

 Slower machines should build smaller packages

 Again: directed by previous builds

 sort packages according to build times

 biggest stuff go to the biggest machine, and so on.

 simple dynamic problem, that’s optimum...

 ... if everything is known

In practice

 Good enough even if everything is not known

 too slow: sorting repeatedly thru 3000 packages in perl

 physics again: use bins

 seperate queue according to build time

 each bin is 4 times as big as the next one

 fastest machine has access to everything

 other boxes are limited to their current bin
 good enough in practice

Everyday life

 Builds break
 disk fills up

 sparcs panic

 keep going anyways

Not so nice example

Everyday life

We want locks
 but the ports tree has locks

 they’re local

 dpb doesn’t want to stop, it wants to do other stuff

 locks are needed for multi-packages and flavors

 you don’t want to build another flavor concurrently

Side benefits
 several dpb can run at once

 errors are not fatal

Everyday life (cont.)

Lots of logs

 log by pkgpath

 log by pkgname

 log errors

 log stats

 log machine build characteristics (libraries)

Everyday life (cont.)

Use logs

 monitor build in terminal
 show % of completion

 based on previous build

 not perfect, so what ?

 show stuck jobs

 show process numbers

dpb itself

Internals

 perl again

 Cores, Jobs, and Tasks

Work in progress

 Bugs to fix

 pkgpath problems

 hard recoveries
 dump-vars

 Simple features

 ETA
 Dependencies rebuilds

 Hard features
 More specific monitoring

 Previous rusage

Thank you

Questions ?

