
bsda:obj for FreeBSD - 1. Introduction

bsda:obj for FreeBSD

Unleashing the FreeBSD Shell1

Abstract

This is a micropaper written by Dominic
Fandrey as background material for his talk
“Binary Package Management and Object
Oriented Shell Scripting under FreeBSD”,
held at the EuroBSDCon 2010 in
Karlsruhe/Germany.

FreeBSD's default shell is an Almquist shell
derivative. The Almquist shell was
originally developed to imitate the Bourne
shell[Man1SH]. In conjunction with the
tools in the FreeBSD base system and a
sufficiently twisted mind it yields near
limitless power to those who know its use.

This paper provides entry points into the
world of object oriented shell programming
and provides a quick hackers' guide to the
author's shell object framework bsda:obj.

1. Introduction

n 2005 the author migrated his IBM
Thinkpad notebook from MS Windows

XP to FreeBSD 5.3, his first serious
encounter with a UNIX style operating
system. By 2010 he claims to be one of the
most outspoken, polarizing and well-known
(though of doubted popularity) members of
the German BSD user community.

I

1 Last edited Friday 8 October 2010

2. Discovering the Shell

The two things that got him hooked were
the FreeBSD ports system, and the power of
the FreeBSD shell. Commuting between
home, friends and his university (the TU
Darmstadt at the time) he wrote a shell
script that was invoked by FreeBSD's
devd(8)[Man8DEVD] system, triggered by
an ACPI event occurring when the WLAN
power switch was activated. This shell
script searches for available networks, sorts
them by connection strength and connects
to them in sequence until it succeeds or
went through them all. Depending on the
network encountered the script executes
small configuration scripts that
automatically open VPN connections and
add additional routes.

A version of this script is still running on
his notebook with more than 60 network
configurations at the time of this writing.

On modern systems and working
environments shell scripting poses two
challenges. Synchronizing work distributed
over several processes and handling huge
data structures.

In March 2008 a new version of the script
named pkg_libchk was released, which
solved the synchronization issue through
file system locking using FreeBSD's
lockf(1)[Man1LOCKF] command. The
second issue proved far more challenging
and was first tackled with the beginning of
bsda:obj development, which was boldly
versioned 1.0 in its first incarnation on the
GPN8 conference[GPN8Code], because it
already contained all the features the author
expected to need. At the time of this writing
the framework has the version 1.16 and is
2218 lines long, instead of the 452 lines of
version 1.0.

1 of 7

bsda:obj for FreeBSD - 3. Objects in the Shell

3. Objects in the Shell

n the 10th November, 2009 the author
wrote a short note about his effort to

bring object orientation to the shell on the
comp.unix.shell

newsgroup[CUSHELL2009A], where he
discovered that he was far from being the
first person to venture this way. A post by
Brian Hiles[CUSHELL2009B] featured a list
of nine projects and papers in the field,
three of which should not go unmentioned,
each of them for entirely different reasons.

O

3.1. SHOOP

When discussing the subject of object
oriented shell scripting this is in the
author's perception, the one project, if any,
people usually know about.

Three developers, Joey Hess, Adam Heath
and Gergely Nagy[ShoopAuthors] have
worked on SHOOP until the last commit to
the project source repository in 2001. All
three can be found on the Debian
developers list[DebianPeople].

The README of the project[ShoopReadme]
states:

Every language under the sun these days is
Object Oriented. In an effort to make POSIX
shell more buzzword compliant, and to show
that it's really not a big deal for a language
to lack built-in OO support, we have added
object orientation to plain old shell script.

It goes on to list the features of SHOOP:
Specifically, we have implemented classless OO
with introspection, finalization,
serialization, and multiple inheritance.

The most notable differences to bsda:obj
are the lack of classes and scope checks.

The syntax does not appeal to this paper's
author, but this is hardly a fair statement,
because unlike bsda:obj, SHOOP conforms
to POSIX.

3.2. UNIX Shell Objects

The book by Christopher A. Jones was at
the beginning of the list posted by Brian
Hiles. UNIX Shell Objects was published by
IDG in 1998[Jones1998]. The book is most
notable for its sheer magnitude, outlined on
the back of the book:

UNIX Shell Objects shows you how to
break the mold of traditional shell
programming and use a shell-based
Object Request Broker to create
multitiered, distributed-object
applications that bridge networks and
platforms.

Jones' Korn shell based framework has a
“one file, one class” philosophy. The syntax
for creating a class requires a lot of eval
calls, thus the framework offers a
preprocessor named shcc, which converts
abstract code to the executable syntax.

The framework has no concept of scope and
access rights, however all attribute access is
through access functions which allows the
implementation of workarounds, this is
announced on page 5 in the book:

When you develop classes in the UNIX
shell, you will not be using private and
public specifiers, but you will implement
access functions. Examples in this book,
however, demonstrate how access rights
can be specified and internal data
“locked” down if needed. In theses
examples, internal code is not included in
the “header” area at the top of the class
file, ...

In chapter 6 on page 139 the author starts to
explain why and how to integrate shell
objects with Java. The second paragraph on
this page states some of the book's author's
reasons:

2 of 7

bsda:obj for FreeBSD - 3. Objects in the Shell

... Also, the shell is single-threaded, only
allowing one line of execution
throughout an application. While you
can have different processes
communicating through IPC, threading
is more powerful when it comes to
certain operations, especially at the
device and network level. The shell also
has no support for sockets. ...

In the opinion of this paper's author it boils
down to leaving the shell for I/O with high
performance requirements.

Summarizing Jones' entire book is beyond
the scale of this paper. Go ahead and read
it.

3.3. A New Object-Oriented
Programming Language: sh

The last project by another party to
introduce here is a paper written by Jeffrey
S. Haemer and released in the proceedings
of the USENIX Summer 1994 Technical
Conference[Haemer1994].

As the author states in chapter 5, the
practical value of his approach is in doubt:

“Cute idea,” you say, “but is this good for
implementing real applications?”
Probably not.

The appealing components of the paper are
the clear and simple concept as well as the
author's humour:

While the system is unconventional, only
a toy, and downright slow, its
implementation is straightforward and
its use instructive.

The concept of Haemer's approach is
summarized in a single paragraph:

In what follows, object classes are shell
scripts and objects are running processes.
Methods are invoked by messages passed
to objects through FIFOs (named pipes).
The methods themselves are
implemented as shell functions; function
polymorphism is guaranteed because
separate programs have separate name
spaces. A class hierarchy is provided by
the file system itself.

The performance implications of making
every single object its own process have
already been established, still the concept
appeals in our n-core world. This paper is
being written on a dual core notebook with
8GB of RAM. Not a meter away stands a
new quad core in a tower that actually
needs less energy than the notebook.

Though the old clock frequency race
appears to have started again, after all there
is only so much you can do in parallel, this
paper's author would not be surprised to
have hundreds or even thousands of cores
at his disposal in a consumer grade CPU,
ten years from now.

4. Using bsda:obj

he latest version of the bsda:obj
framework can always be downloaded

from the BSD Administration Scripts[BSDA]
source repository at SourceForge.net:

T
http://bsdadminscripts.svn.sourceforge.
net/viewvc/bsdadminscripts/bsdadmin
scripts/?view=tar

3 of 7

http://bsdadminscripts.svn.sourceforge.net/viewvc/bsdadminscripts/bsdadminscripts/?view=tar
http://bsdadminscripts.svn.sourceforge.net/viewvc/bsdadminscripts/bsdadminscripts/?view=tar
http://bsdadminscripts.svn.sourceforge.net/viewvc/bsdadminscripts/bsdadminscripts/?view=tar

bsda:obj for FreeBSD - 4. Using bsda:obj

4.1. Libraries

The framework is part of the BSD
Administration Scripts package, releases
can be found in the FreeBSD Ports system
under sysutils/bsdadminscripts[FPBSDA].
The bsda:obj code can be found in the file
src/bsda_obj.sh. The package also contains
libraries using the framework, easily
identified by their names matching the glob
pattern bsda_*.sh.

For the beginning this subsection is just to
provide a context for what is possible, those
interested in how something was done,
should look into the code.

Three libraries are of sufficiently generic
purpose to be of interest to most shell
programmers:

• bsda_messaging.sh

• bsda_scheduler.sh

• bsda_tty.sh

The bsda:messaging library provides
communication classes that allow processes
to talk to each other through file system
based message queues. Semaphores ensure
safe many-read and single-write access to a
queue.

The bsda:scheduler library offers interfaces
and two simple schedulers to manage the
control flow of a process. Because every
scheduler can also run as a process
schedulers can be nested to create a
primitive priority mechanism. To hand
process control over to a primitive
scheduler has the advantage of making it
possible to serialize an entire process, which
offers many possibilities, such as resume
after an interruption or even moving a
process to another machine through a tcp
connection established with nc(1).

The bsda:tty library offers the
bsda:tty:Terminal class to control the
terminal the application is running in. It
allows features like multiple status lines,
output duplication and offers helper
methods to convert numeric values to
common byte size representations. It also
offers a wrapper method around
printf[Man1PRINTF] that has the ability to
scale strings down to make them fit the
terminal. All this works for arbitrary sized
terminals.

4.2. bsda:obj Syntax and Internals

A very thorough and complete introduction
into the bsda:obj syntax can be found in the
first ~1000 lines of the bsda_obj.sh file. It is
a good idea to have it at hand to check
details and try one's own bits of code. This
paper concentrates on interesting features
and concepts instead of completeness.

Classes, Objects and Returning Data

The framework consists of a collection of
functions. The most significant function is
named bsda:obj:createClass(). It takes a
bunch of parameters and creates a class and
a constructor function, which creates
objects. Parameters to the createClass()
function, which cannot be interpreted are
ignored, this way comments can be
embedded into class definitions.

The following are the contents of the
bsda_obj_demo.sh file:
1 #!/bin/sh
2 #
3 # A small demo of "bsda_obj.sh", which demonstrates
4 # return by reference. Note that this even works
5 # safely when the variables within a method have the
6 # same names as the variables in the caller context
7 # (such as is the case for recursive methods).
8 #
9 # These features are really just useful byproducts
10 # of my desire to write object oriented shell
11 # scripts.
12 #
13
14 # Import framework.
15 bsda_dir="${0%${0##*/}}"
16 . ${bsda_dir:-.}/bsda_obj.sh
17
18 # Declare the class.

4 of 7

bsda:obj for FreeBSD - 4. Using bsda:obj

19 bsda:obj:createClass Demo \
20 w:value \
21 This is a comment \
22 x:fibonacciRecursive \
23 "This is a comment, too. <== my preferred style" \
24
25 #
26 # Implementation of the fibonacciRecursive method for the
27 # Demo class.
28 #
29 # Yes I know that this is the least efficient way of
30 # doing this, but it demonstrates what I want it to.
31 #
32 # @param &1
33 # The variable to store the fibonacci value in.
34 # @param 2
35 # The index of the fibonacci value to return.
36 #
37 Demo.fibonacciRecursive() {
38 # Terminate recursion.
39 if [$2 -le 2]; then
40 $caller.setvar "$1" 1
41 return 0
42 fi
43
44 local f1 f2
45
46 $this.fibonacciRecursive f1 $(($2 - 1))
47 $this.fibonacciRecursive f2 $(($2 - 2))
48
49 $caller.setvar "$1" $((f1 + f2))
50 }
51
52 # Create instance.
53 Demo demo
54
55 # Call the fibonacci method from instance and ...
56 # ... store the result in the value variable.
57 $demo.fibonacciRecursive value 8
58 # ... print the result.
59 $demo.fibonacciRecursive '' 8
60
61 # Set an attribute.
62 $demo.setValue $((value - $($demo.fibonacciRecursive '' 6)))
63
64 # Get an attribute and ...
65 # ... store the result in the value variable.
66 $demo.getValue value
67 # ... print the attribute.
68 $demo.getValue

What can be seen in line 19 is that the first
parameter to the createClass() function is
always treated as the class name. The
following parameters either define
attributes or methods. The w:value
parameter defines the attribute value. The
w: prefix triggers automatic generation of
the methods getValue() and setValue().
The x: prefix on line 20 announces a
method.

Methods are created as regular shell
functions following the syntax
<class>.<method>(). The method
implementation in line 37 reveals a very
convenient feature of bsda:obj.

Obfuscating details like parameter checks
have purposefully been left out. What this
example illustrates is that complex values
are not returned through stdout or global
variables. Instead, an arbitrary number of
method parameters can be dedicated to
passing on the names of variables results
are expected in.

The method then has the possibility to use
the $caller.setvar function to write into
variables in the calling context.

It is a solid convention to only do that to
variables whose names have been passed
on. Otherwise the caller would require
undesired amounts of insights into the
method and the danger that an internal
change breaks something grows.

How Methods Work

The constructor function, named after the
class, creates an object context for each
object it creates. This approach uses a
technique that is called closures by
functional programmers. It creates
specialized versions of the class methods,
providing them with the current object
context and the special variables $this,
$class and $caller.

Because the FreeBSD shell does not support
real closures, they are imitated by using
unique prefixes and a call stack for returned
values. The object context is generated by
object functions that populate the $this,
$class and $caller variables, perform
access scope checks and call the class
method implemented by the programmer.
After that function has terminated its local
scope has been left and the data provided
with $caller.setvar() can be taken from
the stack and written into the context of the
caller.

5 of 7

bsda:obj for FreeBSD - 4. Using bsda:obj

The $this variable simply contains the
prefix of the current object. The following is
an interactive sh session, that includes the
previous example:
1 $. bsda_obj_demo.sh
2 21
3 13
4 $ echo $demo
5 BSDA_OBJ_bsda_obj_Demo_0f47995cc363303f_1286381988_35944_0_
6 $

The long string in line 5 is the object ID of
the Demo instance created in line 53 of the
bsda_obj_demo.sh file. BSDA_OBJ_bsda_obj_
are two prefixes provided by the
framework, because it was created with a
vague idea of creating several compatible
frameworks, that can generate interacting
classes and objects. The Demo_ prefix is
generated from the class name.
0f47995cc363303f_ is a hexadecimal
presentation of a random 64bit session ID,
this makes sure that object IDs are unique
under any given circumstances. The next
number 1286381988_ is the UNIX time in
seconds the session was started. The
following number is the current process ID
35944_ and the final 0_ a class instance
counter (starting with 0).

If a script forks it is necessary to use the
bsda:obj:fork() function to make the new
PID known to the forked process and make
sure they create objects with different IDs.

Additional Features

This example hopefully suffices to get
started and get an idea how the framework
works.

The bsda:obj framework however has many
more notable features than those
introduced here, the following list is an
attempt to provide the complete feature set:

• Classes
• Interfaces
• Multiple inheritance

• Private, protected and public access
scopes

• Namespaces
• Serialization and recursive (deep)

serialization
• Reflection and introspection
• Automatic getter and setter

generation
• Access scope widening (e.g. make

automatic getters public and leave
the setter private)

• Caller resolution through the
$caller.getObject() and
$caller.getClass() functions

• Convenient return stack through the
$caller.setvar() function

• Constructors and destructor methods
can call optional init and cleanup
methods that can prevent object
creation/deletion (besides all the
other useful stuff like initializing
attributes or recursive data structure
removal)

The contents section of the bsda_obj.sh file
provides an overview over the framework
documentation:
TABLE OF CONTENTS
#
1) DEFINING CLASSES
1.1) Basic Class Creation
1.2) Inheritance
1.3) Access Scope
1.4) Interfaces
2) IMPLEMENTING METHODS
2.1) Regular Methods
2.2) Special Methods
3) CONSTRUCTOR
4) RESET
5) DESTRUCTOR
6) COPY
7) GET
8) SET
9) TYPE CHECKS
9.1) Object Type Checks
9.2) Primitive Type Checks
10) SERIALIZE
10.1) Serializing
10.2) Deserializing
11) FORKING PROCESSES
12) REFLECTION & REFACTORING
12.1) Attributes
12.2) Methods
12.3) Parent Classes and Interfaces
13) COMPATIBILITY
13.1) POSIX
13.2) bash - local
13.3) bash - setvar
13.4) bash - Command Substitution Variable Scope
13.5) bash - alias

6 of 7

bsda:obj for FreeBSD - 4. Using bsda:obj

Note that despite the framework's size of
more than 2200 lines, only about 650 of
these actually contain code. The remaining
lines contain white space, comments and
documentation.

5. Conclusion

s has hopefully been shown getting
started is not difficult. The code of the

framework and the libraries is in many
places difficult to read and obscure. But it is
also extensively documented.

A

I greatly welcome any mention of where the
code is difficult to understand and
insufficiently documented or simply
broken. I can be contacted via e-mail at
<kamikaze@bsdforen.de>. If you speak
German visit the German BSD community
at http://bsdforen.de, my usual hangout on
the net.

6. Bibliography
[BSDA] Dominic Fandrey, BSD

Administration Scripts, Geeknet,
Inc., 2010,
http://sourceforge.net/projects/
bsdadminscripts/

[CUSHELL2009A] Dominic Fandrey, Object
Oriented Shell Scripts,
comp.unix.shell, 2009,
http://groups.google.com/grou
p/comp.unix.shell/msg/abcdff4
04971eac0?dmode=source

[CUSHELL2009B] Brian Hiles, Re: Object Oriented
Shell Scripts, comp.unix.shell,
2009,
http://groups.google.com/grou
p/comp.unix.shell/msg/20c66ac
2fb145ad6?dmode=source

[DebianPeople] Various, Debian - Project
Participants, SPI, 2010,
http://www.debian.org/devel/p
eople

[FPBSDA] Dominic Fandrey, FreshPorts -
sysutils/bsdadminscripts:, DVL
Software Limited, 2010,
http://www.freshports.org/sysu
tils/bsdadminscripts/

[GPN8Code] Dominic Fandrey,
Objektorientierte Shell-Skripte ,
Entropia e.V. CCC Karlsruhe,
2009,
http://entropia.de/wiki/GPN8:
Code#Objektorientierte_Shell-
Skripte

[Haemer1994] Jeffrey S. Haemer, A New Object-
oriented Programming
Language: sh, USENIX Summer
1994 Technical Conference, 1994

[Jones1998] Christopher A. Jones, UNIX Shell
Objects, IDG, 1998, ISBN 0-7645-
7004-8

[Man1LOCKF] John Polstra, lockf(1) - Execute a
Command While Holding a File
Lock, The FreeBSD Project, 1998

[Man1PRINTF] Various, printf(1) - Formatted
Output, The FreeBSD Project,
2005

[Man1SH] Kenneth Almquist, sh(1) -
Command Interpreter (shell), The
FreeBSD Project, 2010

[Man8DEVD] M. Warner Losh, devd(8) - Device
State Change Daemon, The
FreeBSD Project, 2005

[ShoopAuthors] Joey Hess, Adam Heath and
Gergely Nagy, AUTHORS, Shoop:
SHell Object Oriented
Programming, 2001,
http://shoop.cvs.sourceforge.net
/viewvc/shoop/shoop/docs/A
UTHORS?revision=1.2

[ShoopReadme] Joey Hess and Adam Heath,
README, Shoop: SHell Object
Oriented Programming, 2000,
http://shoop.cvs.sourceforge.net
/viewvc/shoop/shoop/docs/RE
ADME?revision=1.26

7 of 7

http://bsdforen.de/
mailto:kamikaze@bsdforen.de

	1. Introduction
	2. Discovering the Shell
	3. Objects in the Shell
	3.1. SHOOP
	3.2. UNIX Shell Objects
	3.3. A New Object-Oriented Programming Language: sh

	4. Using bsda:obj
	4.1. Libraries
	4.2. bsda:obj Syntax and Internals
	Classes, Objects and Returning Data
	How Methods Work
	Additional Features

	5. Conclusion
	6. Bibliography

