
The long long road to pkg_add -u

Marc Espie (espie@openbsd.org)
october 2010, sunday 10

In the beginning (2000 ?)

There were the tools from Jordan Hubbard, with a lot of drawbacks:

 they were slow

 they were in C

 they were a hack

and one good point

 they existed

Who am I

At this point in time,

 I had been involved with OpenBSD ports for about five years.

 I was "chief architect" of the ports tree.

 I had rewritten a lot of the .mk file,
 and I had taken over make itself.

but this is a topic for another talk.

Some design goals

 Focus on binary packages. Only porters should build packages (Theo’s insight)

 Be safe. C is fast and everything, but a summary audit of pkg_add showed tons
of possible buffer overflows.

 Having updates would be cool eventually.

 Stop reinventing the wheel. We shouldn’t have tens of scripts that parse
package manifests.

 Be fast. Users don’t want to wait for packages.

Bonus goals

 Be compatible with existing stuff

 Text /var/db/pkg is nice

The most controversial decision: Perl

Why not

 A lot of people don’t like perl for irrational reasons

 Write-only code (but see IOCCC)

 It could be slow
 Long start-up time

But
 I like it
 Need a RAD platform, let’s take one I know

 Very modular. Nice namespace system

 Perl is part of the base system in OpenBSD

Architectural and practical goals

Architectural goals

 clean API for package manifests (packing-lists)

 fluid design, it will evolve

Practical goals

 Acceptance of the new tools

 Complete replacement

 Fast enough

Architectural goals

Six months (and several iterations later)

 a design I liked.

In the end
 packing-lists are structured objects

 They can be read/written.

 This validates and normalizes the structure.
Each object is a packing-element (base class) & further properties.

 Differences are implemented as methods

 Perl bonus: classes are "open"

 you can add a visitor later, as an after-thought

All operations in the ports tree that manipulate packing-lists

use this abstraction.

Architectural goals (cont.)

 Objects are stored in lists according to type.

 Meta-information "migrates" to the top.

 Positional information (such as @mode/@owner) migrates to every object

Goal achieved:

 Clean design that scales well.

That "core" of pkg_add is just glorified MANIFEST handling.

It has to be perfect !

Practical goals

The initial replacement got faster than the C version.

The C version used external tar(1), where the perl version unpacked its archive
itself (using its own Ustar module), so no staging area required.

Turned out the most expensive operation was copying files around.

 Dropped-in replacement for pkg_add/pkg_delete in 2003:

 no showstopper bug!

 Used Ustar write support for pkg_create in 2005

BSD is dying

and SmallTalk is dead.
 (Ask PHK, everyone’s doing Lisp^WXML)

 But you can still write SmallTalk in perl

 open classes can be extended later

 hashes are nice for adding to data structure later

 modules can use the same hash, not knowing about each other

 not many collisions

 Same optimization techniques

 Same drawbacks
 Same benefits

Marketing mistake

In retrospect, keeping the same name was cool internally, and a mistake with
respect to other projects.

Newcomers expect the same clunky dumb tools that exist on
*BSD, whereas our pkg_add has nothing in common with

those.

A design observation

Most package tools are built as "smart" tools that call "dumb" tools.

This is wrong WRONG WRONG !!!

Dumb tools will use only the information they need. Smart tools have to "discover"
things: deduce semantic information from what dumb tools tell them, and reparse

stuff to get additional info.

Lots of processing power wasted. Redoing the same thing over and over.
Problems in dumb tools are hard to solve, because dumb tools don’t have enough

information to take smart action.

A design observation (cont.)

Dumb tools will need automatic generation.

Sometimes this works
 autoconf is a shining example of that

Seriously

 auto-generate scripts = auto-generate BUGS

Smart API: benefits

 All package tools use the same interface to packing-lists

 all the information is exposed.

 Tools can grab whatever they want.

 Full semantic information
 everything relevant to a file/other object is there and can be used.

 During a package addition, there’s a single instance of pkg_add.

 doesn’t have to rescan /var/db/pkg.

 just needs to keep its internal information synchronized.

 The same information can be used by validation checkers.

 same API, exact same semantic info as pkg_add

Smart API benefits: reuse

 2003: find-all-conflicts
 2004: check-lib-depends

 2004: make-plist

 2005: register-plist

adding stuff to packing-lists is trivial

 you just need to write one method or two once

 don’t repeat yourself EVER

ongoing work

 PackingList/Element API is stable since 2008 ?

pkg_add -u, up in the sky

Impossible design goal

 type pkg_add -u and have it update everything

OpenBSD: realistic goals

Don’t try to do sudoku in pkg_add (any debianists ?)

Need for stepping stones

 how do I update one single package ?

 how will that break if I update more than one ?

 how do I discover what I need to update ?

pkg_add -r, that’s cheating

So the initial idea was to be able to replace one single package.

Happened in 2004-2005.

That’s pkg_add -r:

 you pass it the new package name, and it replaces things.

 Replacement works backwards: you deduce the old name from the new one

 Replacement must be safe.

Transactional vs. provable semantics

A lot of package systems out there do transactional semantics.

 try to update

 if it f* up, go back to previous state.

We do provable replacements

 compute as much as we can to ensure things won’t fail

 once we’re satisfied, do the replacement (that can’t fail)

Works most of the time
 We now have tools (pkg_check, 2010) in the remaining cases.

Provable semantics

 Check dependencies still match

 Verify the file system will fit (vstat)

 Extract all files in temporary locations

 Do various other things

The temporary location is as close as possible to the final one (same

directory usually), so if we can write the file, we can move it.

Only case where it fails is catastrophic failure (panic!!!)...

or bugs in pkg_add (shit happens)

Visitor, again

For instance:
 package addition is a module Add.pm

 visits a packing-list, calling install on each object

 for replacement

 visit old list for validation
 visit new list for validation
 visit new list with extract (temporary file)

 visit old list with delete
 visit new list again with install

Matching dependencies

Both forward, and backwards.
 to install a new package, dependencies must already be there

 to replace a package, stuff that depends on it must still work

 libraries are a problem

Solving the library problem, ports

Developers upstream don’t understand ABI issues.

They’re too busy converting to XML...

The system must take control: change typedef size_t, and have all

C++ libraries be incompatible.

 long and painful process: we control every shared library

 lots of people helped

 (there’s some magic for libtool and cmake and...)

Solving the library problem, packages

Package dependencies: do libraries independently.

 A package that wants a given library has a @wantlib in its packing-list.

 This @wantlib is inserted very late

 and dependent on the current system.

Packages register their libraries: those files are tagged with @lib.

A library will be found

 if there’s a @lib that matches a @wantlib somewhere
 in the @depend tree during installation

 or in the base system

Solving the library problem, updates

 Ties between @lib and @wantlib are stored under /var/db/pkg.

During an update,

 old libraries are kept and put in stub packages.

 They’re only replaced if the ABI is the same.

The stub packages can be removed

 once all dependent packages have been updated.

Maximal reuse:
 stub packages are normal packages

Working replace

In 2005 pkg_add -r did start working.

OpenBSD was able to update packages by specifying a list of new packages

 Replacing one package at a time

 Start on the inside (packages with no dependencies)

 End on the outside (packages with all dependencies)

 Safe: each individual replacement was checked before performing it.

Speaking of the devil

(Hi, Theo):

Details, details, details
 fonts are special

 libraries require ldconfig

 info files are weird
 directories can be shared
 when do we create new users

one single pkg_add running

 common data structures
 stash structured hashes
 use data when needed (visitor pattern)

For instance

the old pkg_add required @exec ldconfig annotations.

the new one knows about @lib, and @exec, and runs ldconfig just in time.

Thus being much faster.

@dirrm is gone. Directories are handled as shared items (last package out
removes the directory)

pkg_add -u, cheating version

Running pkg_add -r is tedious: you must know all package names.

Let’s discover them instead (Aug. 2005).

 We have clean package names: stem-version-flavor

 To update, look at packages that share the same stem

 Keep only the packages that conflict

 Keep only packages coming from the same ports directory

pkg_add -u, cheating version (cont.)

For instance,
 to update mutt-1.4,

 mutt-1.5 and mutt-1.4.1 are candidates
 they conflict with mutt-1.4 (@conflict mutt-*)

 mutt-1.4 came from mail/mutt/stable
 mutt-1.4.1 comes from mail/mutt/stable
 mutt-1.5 comes from mail/mutt/snapshot

 choose mutt-1.4.1

Look ma, no database

Half a design goal was to keep things dead simple: we stored text files and under
/var/db/pkg, and we cache absolutely nothing.

As an OpenBSD developer, I’m totally paranoid. cache synchronization does fuck
up. If I can get one less failure point, I want to!

So we get update information on the go: open package, scan beginning of
packing-list, close package.

It was a game: how far can we get with no db.

Look ma, no database

Turns out we could go ALL THE WAY.

We still do not have any database.

Big toll on ftp (lots of open/close connections).

We have plans for http.

Good design:

 forces sensible package names.

 pkg_add can deduce most things from package names,

 and so can the user.
 There are few exceptions.

But it’s cheating!

 Notice we don’t use version numbers
 This can downgrade packages

 Okay it won’t, since OpenBSD has complete snapshots

 We don’t deal with dependencies problems.

 If two packages are tied (say pgsql-client/server), we update one, then the
other. Even though the system says no.

Slow going

 1/ discover all updates

 2/ run each of them as a replacement

If something breaks, you’re back to 1/. Finding updates is slow.

Where do we go from there (Once more with feeling)

Plan to do better updates.

 incremental stuff, so we update as we find them

 actually use version numbers.

Details again

 a lot of special cases showed up

 most of them were difficult to predict

Good plan

 impossible to design for everything from scratch

 get it 99% of the way working, then solve the 1%.

 we can’t predict the future

 perl is good: fluidity

Weird shit, good shitz

 files move between packages

 dependency inversions happen

 tied updates should be handled

 packages will get renamed, or disappear

 version numbers should be handled

UpdateSets (2007-2010)

We model a full update as a set of small atomic operations.

Replacements were old package -> new package.

An UpdateSet is (set of old) -> set of new.

As small as possible, so if an update stops, your system still works.

Tracker and UpdateSets

 pkg_add creates a list of UpdateSets

 some module is responsible for filling the blanks

 the engine checks that an UpdateSet is complete

 if it’s not, the engine merges the UpdateSet with what’s needed.

 Tracker is responsible for all UpdateSets

 The replacement engine is responsible for merging stuff

 The dependency engine cooperates with the Tracker to process UpdateSets in
the right order.

In theory...

all is good.

 We discover updates on the fly

 pkg_add starts working right away

 UpdateSets are very small

 as safe as possible

In practice...

 very complicated: quite a few bugs

 some updatesets are less small than others.

 very slow

libfam -> avahi update triggerred "big" updatesets: 50 packages to update in one
go.

pkg_add would take >1 minute

for one iteration of the tracker engine.

Publicity

But perl is very good. It has a killer profiler. If you use perl, use

NYTProf

best profiler ever.

After better caching and optimizing (normal Smalltalk tricks),

 pkg_add was back to instantaneous for this,

 and faster for normal cases.

Sugar and details

pkg_add has a progress bar.

pkg_add has quirks: quirks is a specific package that contains all exceptions to
naming problems.

So we handle:
 renames
 stuff in the base system

okay, database... if you can call a database a list of ~30 package names.

Big detail: signatures

When do we update a package ?

 when it changes

 ... or when its build dependencies change

 so each package records its dependencies: @depend and @wantlib

 that’s a package signature

Confusing:

 internally, pkg_add manipulates package locations

 they have names

 they come from somewhere

 two packages of the same names can be different

Looking back

The main mistake I did was not look at version numbers earlier.
Cheating on pkg_add -r was very costly.

People didn’t get the rules for pkg_add -u.

After adding a lot of error messages to pkg_add, and fixing problems, we have
clean stuff now.

It is still complicated, but it is solving a complicated problem !

Current pkg_add (and tools) is 15000 lines of perl.

Looking back (cont.)

One mistake I did not make was try to solve it at once

 pkg_add -u is a practical tool

 initial design goals were quickly met

But you can’t predict the future

 ran into unexpected problems

 ran into inefficiencies
 have very hard-to-please users...

OpenBSD is an hostile environment, and that’s GOOD for
quality.

Keeping up with the Jones

I keep a close look on apt, pkgsrc, rpm, pkg_upgrade...

 we’re better than all of them
 ... because we have our design goals

 stability and reproducability

 less knobs
 same principle as the rest of OpenBSD

 including OpenSSH

The future

Currently pkg_add is fastest using scp: it uses the rsync trick.

http 1.1 would make things faster.

 It supports byte-range

 so we can "guess" at what we need from a packing-list, and bring a package in
slowly.

pkgin frontend

 We don’t need pkgin. Our pkg_add does everything pkgin does.

 But the pkgin UI is nice. It’s just a question of writing it.

more ldconfig sugar

 write a packing-list interface to common operations,

 stuff like @update-desktop-database doesn’t run 20 times during a gnome
update.

Thank you

 to my fellow porters

 to my fellow users

 to my audience

 Any questions ?

