
  

The new USB stack in FreeBSD 8/9

by

Hans Petter Selasky (hselasky @ freebsd . org)

Master in Technology, in Information and Communication Technology, 
at Agder University College in Norway, Faculty of Engineering and Science

EuroBSDCon, Karlsruhe, Germany

October 2010



  

Quick overview

● USB introduction
● USB data transfers
● USB stack and SMP
● USB callback threads
● USB polled mode
● USB in userspace

. . .
● History and lessons learned



  

What is USB?

● USB 1 and USB 2 is a 2-wire half-duplex 
asymmetric protocol designed to connect an 
external peripheral to your computer. Two 
additional wires are used to supply electricity 
(+5.0V 0..500mA) to your device.

● USB has 4 quality of services categories for 
data transfers:
● ISOCHRONOUS (fixed rate and no retransmit)
● INTERRUPT (fixed rate and retransmit)
● CONTROL (non-fixed rate and retransmit)
● BULK (non-fixed rate and retransmit)



  

What is USB?

● Read more about USB at:
● http://www.usb.org



  

USB data transfer management

● Symmetric API for Host and Device mode and 
supported USB transfer types.
● Blocking calls

– usbd_transfer_setup()
● pre-allocation of resources yields

– reduced execution latency
– reduced CPU usage

– usbd_transfer_unsetup()
– usbd_transfer_drain()

● Non-blocking calls
– usbd_transfer_start()
– usbd_transfer_stop()



  

USB data transfer management

● USB transfers are now I/O vectored
● Multiple USB frames can be transmitted in a 

single USB transfer having a pointer and length.

USB PKT USB PKT USB PKT ZLP

USB FRAME

wMaxPacket

#0

#1

. . .

U
S

B
 tra nsfer



  

USB data transfer management

● From start to stop

STALL

NICE

BDMA

ENTER

START

DONE

usbd_transfer_submit()

usbd_transfer_stop(), 
error() or timeout()



  

USB control transfers

● Supports up to 64KByte of payload re-using the 
same 1KByte buffer. A single control transaction 
can be split across multiple USB transfers.

● Supports transferring data directly to/from user-
space using copyin/copyout to a fixed-size 
kernel buffer. This saves a kernel malloc and 
free per control request and gives a significant 
latency reduction.

● Takes a mutex argument which is passed to 
mtx_sleep() and the alike.



  

USB stack and SMP

● Parallellism

CPU CPU

DC/HC
1 lock

DC/HC
1 lock

Driver
1 lock

Driver
1 lock

Driver
1 lock

CPU

DC/HC

Giant CBT
(keyboard)

Non-Giant CBT

HUB explore CBT

Control EP CBT
(clear stall & more)

Kernel callback threads



  

USB stack and SMP

● Vertically – two mutexes
● USB class driver mutex (one per class driver)
● USB controller driver mutex (one per controller)
● 2 locks = 4 lock combinations

USB CORE

USB Host /
Device

Controller

USB class driver ...USB class driver

USB Host /
Device

Controller
...



  

USB stack and SMP

● The USB class driver lock must be locked 
before starting or stopping any data transfers

● The USB class driver lock is automatically 
locked before the data transfer callback is 
called.

● Reduces the need for mutex operations in 
drivers.

● Resolves corner cases. What happens if ...
● Idea: Running code atomically with regard to a 

mutex and integrating locking and unlocking 
into the APIs.



  

USB stack and SMP

● The USB transfer structure is always referred to 
by a pointer. The USB transfer methods are 
NULL safe.

mtx_lock(&sc->sc_mtx);
usbd_transfer_start(sc->sc_xfer[0]);
mtx_unlock(&sc->sc_mtx);

This ensures atomicity when tearing down the 
transfers. Either the USB transfer pointer is set 
and the transfer is started or the USB transfer 
pointer is not set and the transfer is not started.



  

USB stack and SMP

● Synchronous USB control transfers take a 
mutex argument for sake of convenience that 
will be exited and entered before return if 
blocking operation is required.



  

USB callback threads

● Almost like a task queue, except two queue 
entries per task.

● Rule: Last queued is last executed. A task 
queue does not guarantee this.

1 2 1 1 2

1 2 1 1 2 2nd

Switch ON

Switch OFF

Other command



  

USB explore callback thread

Root
HUB

NULL parent

PORT 1 PORT 2 PORT N

DEV
HUB

P1 P2 P3 ... PN

DEV

● Device organisation

- probe
- attach
- detach
- suspend
- resume
- shutdown



  

USB explore callback thread

● Power save
● Integrated in USB HUB code
● Seamless with regard to USB transfers
● 30 second suspend delay

– Turned off by default due to many broken USB devices.
– usbconfig -d x.y power_save



  

USB explore callback thread

● Port event
● Status change

● Port status
● Suspend / Resume
● Enabled / Disabled
● Host / Device mode (new BSD specific)
● Cable transmit speed



  

USB stack and polled mode

● Only USB data transfers can be polled. 
Enumeration requires thread context.

● Allows you to use the USB keyboard or USB 
dump device in KDB, after a panic or during 
early boot. 



  

USB and userspace

● LibUSB v0.1 API
● LibUSB v1.0 API
● LibUSB v2.0 (BSD specific API)
● Most of the functionality provided by the kernel 

USB API is exported to userspace via LibUSB
● Legacy endpoint nodes

USB - kernel

LibUSB

/dev/usb/x.x.x

Application



  

USB and userspace

● usbconfig utility – the swiss army knife of USB
● Select USB configuration
● Dump USB descriptors
● Manage USB quirks
● Perform USB control requests
● Select USB power mode
● Sits on top of LibUSB v2.0.



  

USB Mass Storage Tester

● Some USB devices provide autoinstall software 
mostly for closed source operating systems. 
These are detected and skipped when possible.

● For example: 3G wireless dongles



  

USB throughput and performance

● Nothing more and nothing less than what is expected.

● FullSpeed USB (v1.0)

● 0.8-1.0MByte/second
● 1000 IRQ/s

● HighSpeed USB (v2.0)

● 30-35MByte/second (depends on Host and Device)
● 8000 IRQ/s

● SuperSpeed USB (v3.0)

● 90-350Mbyte/second (depends on Host and Device)
● 8000 IRQ/s



  

USB throughput and performance

● USB HighSpeed test, reading data from the 
same external USB memory stick:
● Command used

dd if=/dev/rdisk1 of=/dev/null bs=65536 count=1000

● Mac OS X 10.5.8 on MacBook Pro
65536000 bytes transferred in 3.710055 secs (17664428 bytes/sec)

● FreeBSD 9-current on MacBook Pro
65536000 bytes transferred in 6.014830 secs (10895736 bytes/sec)
The low throughput is because the Nvidia chipset used has the IAAD bug. See last test 
result for relevant comparison.

● Ubuntu 9.04 on MacBook Pro
65536000 bytes (66 MB) copied, 4.0388 s, 16.2 MB/s

● FreeBSD 8-stable on Acer Travelmate (Intel chipset)
65536000 bytes transferred in 3.563875 secs (18388973 bytes/sec)



  

Security and reliability

● Extra time has been spent during development 
to ensure proper range checks and USB 
descriptor validation.

● Extra time has been spent during development 
to identify and resolve races during detach.
For example in /dev/usb/x.x.x



  

History and lessons learned

● Started due to missing HW driver support in 
FreeBSD in 1999 when I was 17 years old. It 
ended up with a brand new USB stack in 2009. 
The USB stack was mainly developed in my 
sparetime after doing my homework 
assignments when going to school for many 
years.

● I´m very thankful for the trust I´ve been given to 
make the new USB stack in FreeBSD.

● I hope that my work will be an inspiration to 
others for many years to come!



  

Questions ?


