
Journaled Soft-updates

Marshall Kirk McKusick

Author and Consultant

Jeff Roberson

Consultant

ABSTRACT

This paper describes the work to add ‘‘journaling lite’’ to soft updates and its incorporation into
the FreeBSD fast filesystem.Because soft updates prevent most inconsistencies, the journal need
only track those inconsistencies that soft updates fails to address.Specifically, the journal con-
tains the information needed to recover the block and inode resources that have been freed but
whose freed status failed to make it to disk before a system failure. Aftera crash, a variant of the
venerablefsck program runs through the journal to identify and free the lost resources. Only if
an inconsistency between the log and filesystem is detected is it necessary to runfsck. The jour-
nal is tiny, 16Mb is usually enough independent of filesystem size. Although journal processing
needs to be done before restarting, the processing time is typically just a few seconds and in the
worst case a minute.It is not necessary to build a new filesystem to use soft-updates journaling.
The addition or deletion of soft-updates journaling to existing fast filesystems is done using the
tunefs program.

1. Background and Introduction

The soft updates dependency tracking system
was adopted by FreeBSD in 1998 as an alternative to
the popular journaled-filesystem technique [Ganger &
Patt, 1994; McKusick, Bostic, Karels, & Quarterman,
1996]. While the runtime performance and consis-
tency guarantees of soft updates are comparable to
journaled filesystems [Seltzer et al, 2000], it relies on
an expensive and time-consuming background filesys-
tem recovery operation after a crash [McKusick,
2002]. Thispaper outlines a method for eliminating
the necessity of an expensive background or fore-
ground whole-filesystem check operation through the
use of a small journal which logs the only two incon-
sistencies possible in soft updates.The first is allo-
cated but unreferenced blocks; the second is incor-
rectly high link counts. Incorrectly high link counts
include unreferenced inodes that were being deleted
and files that were unlinked but open [Ganger, McKu-
sick, & Patt, 2000]. This journal allows a journal-
analysis program to complete recovery in just a few
seconds independent of filesystem size.

2. Compatibility with Other Implementations

Journaling is enabled via tunefs and only
requires a few spare superblock fields and 16Mb of
free blocks for the journal.These minimal require-
ments make it easily enabled on existing FreeBSD
filesystems. Thejournal’s filesystem blocks are
placed in an inode named.sujournal in the root of the
filesystem and filesystem flags are set such that older
non-journaling kernels will trigger a full filesystem
check upon mounting a previously journaled volume.
When mounting a journaled filesystem, older kernels
clear a flag indicating that journaling is being done so
that when the filesystem is next encountered by a ker-
nel that does journaling, it will know that that the
journal is invalid and will ensure that the filesystem is
consistent and clear the journal before resuming use
of the filesystem.

3. Journal Format

The journal is kept as a circular log of segments
containing records which describe metadata opera-
tions. If the journal fills, the filesystem must complete
enough operations to expire journal entries before
allowing new operations. Inpractice, the journal



almost never fills.

Each journal segment contains a unique
sequence number and a timestamp which identifies
the filesystem mount instance so old segments can be
discarded during journal processing. Journal entries
are aggregated into segments to minimize the number
of writes to the journal.Each segment contains the
last valid sequence number at the time it was written
to allow fsck to recover the head and tail by scanning
the entire journal. Segments are variably sized as
some multiple of the disk block size and are written
atomically to avoid read/modify/write cycles in run-
ning filesystems.

The journal-analysis has been incorporated into
the fsck program. Thisincorporation into the existing
fsck program has several benefits. The existing startup
scripts already callfsck to see if it needs to be run in
foreground or background.For filesystems running
with journaled soft updates,fsck can request to run in
foreground and do the needed journaled operations
before the filesystem is brought online.If the journal
fails for some reason, it can instead report that a full
fsck needs to be run as the traditional fallback. Thus,
this new functionality can be introduced without any
need for system administrators to change the way that
they start up their systems.Finally, the invoking of
fsck means that after the journal has been processed, it
is possible for debugging purposes to fall through and
run a complete check of the filesystem to ensure that
the journal is working properly.

The journal entry size is 32 bytes, providing
quite a dense representation allowing for 16 entries
per-sector. The journal is created in a single area of
the filesystem in as contiguous an allocation as is
available. We considered spreading it out across
cylinder groups to optimize locality for writes but it
ended up being so small that this approach was not
practical and would make scanning the entire journal
during cleanup too slow.

The journal blocks are claimed by a named
immutable inode. This approach allows user-level
access to the journal for debugging and statistics gath-
ering purposes as well as providing backwards com-
patibility with older kernels that do not support jour-
naling. We hav efound that a journal size of 16Mb is
sufficient in even the most tortuous and worst-case
benchmarks. A16Mb journal can cover over 500,000
namespace operations or 8Gb of outstanding alloca-
tions (assuming a standard 16Kb block size).

4. Modifications that Require Journaling

The next subsections describe the operations
that must be journaled so that the information needed
to clean up the filesystem is available tofsck.

4.1. Increased Link Count

A l ink count may be increased through a hard
link or file creation. The link count is temporarily
increased during a rename. Here, the operation is the
same. Theinode number, parent inode number, direc-
tory offset, and initial link count are all recorded in
the journal. Soft updates guarantees that the inode
link count will be increased and stable on disk prior to
any directory write. The journal write must occur
prior to the inode write that updates the link count and
prior to the bitmap write that allocates the inode if it is
newly allocated.

4.2. Decreased Link Count

The inode link count is decreased through
unlink or rename. The inode number, parent inode,
directory offset, and initial link count are all recorded
in the journal. The deleted directory entry is guaran-
teed to be written before the link is adjusted down.
As with increasing the link count, the journal write
must happen prior to all other writes.

4.3. Unlink While Referenced

Unlinked yet referenced files pose a unique
problem for journaled filesystems.In UNIX, an
inode’s storage is not reclaimed until after the final
name is removed and the last reference is closed.
Simply leaving the journal entry valid while waiting
for applications to close their dangling references is
untenable as it will easily exhaust journal space.A
solution which scales to the total number of inodes in
the filesystem is required. At least two approaches are
possible, a replication of the inode allocation bitmap,
or a linked list of inodes to be freed.We hav echosen
to use the linked-list approach.

In the linked-list case, which is employed by
several filesystems (xfs, ext4, etc.), the super-block
contains the inode number that serves as the head of a
singly linked list of inodes to be freed, with each
inode storing a pointer to the next inode in the list.
The advantage of this approach is that at recovery
time you need only examine a single pointer in the
superblock which will already be in memory. The
disadvantage is that you must keep an in memory dou-
bly-linked list so that you can rapidly remove an inode
once it is unreferenced. This approach ingrains a
filesystem-wide lock in the design and incurs non-



local writes when maintaining the list.In practice we
have found that unreferenced inodes occur rarely
enough that this approach is not a bottleneck.

Removal f rom the list may be done lazily but
must be completed prior to any re-use of the inode.
Additions to the list must be stable prior to reclaiming
journal space for the final unlink but otherwise may be
delayed long enough to avoid needing the write at all
if the file is quickly closed.Addition and removal
involve only a single write to update the preceding
pointer to the subsequent inode.

4.4. Changeof Directory Offset

Any time a directory compaction moves an
entry, a journal entry must be created indicating the
old and new locations of the entry. The kernel does
not know at the time of the move whether a remove
will follo w it, so at this time all offset changes are
journaled. Without this information fsck would be
unable to disambiguate multiple revisions of the same
directory block.

4.5. BlockAllocation and Free

When performing either block allocation or
free, whether it is a fragment, indirect block, directory
block, direct block, or extended attributes the record is
the same. The inode number of the file and the offset
of the block within the file is recorded using negatives
for indirects and extents as is done with ‘‘getblk’’.
Additionally, the disk block address and number of
fragments is included in the journal record. The jour-
nal entry must be written to disk prior to any alloca-
tion or free.

When freeing an indirect only the root of the
indirect tree is logged. Thus, for truncation we need a
maximum of 15 journal entries, 12 for direct blocks
and 3 for indirects.These 15 journal entries allow us
to free a large amount of space with a minimum of
journaling overhead. Duringrecovery, fsck will fol-
low indirect blocks and free any descendants includ-
ing other indirects.For this algorithm to work, the
contents of the indirect block must remain valid until
the journal record is free so that user data is not con-
fused with indirect pointers.

5. Additional Requirements of Journaling

Some operations that had not previously
required tracking under soft updates need to be
tracked when journaling is introduced.This section
describes these new requirements.

5.1. Cylinder Group Rollbacks

Soft updates previously did not require any roll-
backs of cylinder groups as they were always the first
or last write in a group of changes.When a block or
inode has been allocated but its journal record has not
yet been written to disk, it is not safe to write the
updated bitmaps and associated allocation informa-
tion. The routines which write blocks with
bmsafemap dependencies now rollback any alloca-
tions with unwritten journal operations.

5.2. InodeRollbacks

The inode link count must be rolled back to the
link count as it existed prior to any unwritten journal
entries. Allowing it to grow beyond this count would
not cause filesystem corruption but it would prohibit
the journal recovery from adjusting the link count
properly. Soft updates already prevents the link count
from decreasing before the directory entry is removed
as a premature decrement could cause filesystem cor-
ruption.

When an unlinked file has been closed, its inode
cannot be returned to the inode freelist until its zeroed
block pointers have been written to disk so that its
blocks can be freed and it has been removed from the
on-disk list of unlinked files. The unlinked-file inode
is not completely removed from the list of unlinked
files until the next pointer of the inode that precedes it
in the list has been updated on disk to point to the
inode that follows it on the list. If the unlinked-file
inode is the first inode on the list of unlinked files,
then it is not completely removed from the list of
unlinked files until the head-of-unlinked-files pointer
in the superblock has been updated on disk to point to
the inode that follows it on the list.

5.3. ReclaimingJournal Space

To reclaim journal space from previously writ-
ten records, the kernel must know that the operation
the journal record describes is stable on disk.This
requirement means that when a new file is created, the
journal record cannot be freed until writes are com-
pleted for a cylinder group bitmap, an inode, a direc-
tory block, a directory inode, and possibly some num-
ber of indirect blocks.When a new block is allocated,
the journal record cannot be freed until writes are
completed for the new block pointer in the inode or
indirect, the cylinder group bitmap, and the block
itself. Blockspointers within indirects are not stable
until all parent indirects are fully reachable on disk
via the inode indirect pointers.To facilitate fulfill-
ment of these requirements, the dependencies that



describe these operations carry pointers to the oldest
segment structure in the journal containing journal
entries that describe outstanding operations.

Some operations may be described by multiple
entries. For example, when making a new directory,
its addition creates three new names. Eachof these
names is associated with a reference count on the
inode to which the name refers. When one of these
dependencies is satisfied, it may pass its journal entry
reference to another dependency if another operation
on which the journal entry depends is not yet com-
plete. If the operation is complete, the final reference
on the journal record is released. When all references
to journal records in a journal segment are released,
its space is reclaimed and the oldest valid segment
sequence number is adjusted.We can only release the
oldest free journal segment, since the journal is
treated as a circular queue.

5.4. Handlinga Full Journal

If the journal ever becomes full, we must pre-
vent any new journal entries from being created until
more space becomes available from the retirement of
the oldest valid entries.A very effective way to stop
the creation of new journal records is to suspend the
filesystem using the mechanism in place for taking
snapshots. Oncesuspended, existing operations on
the filesystem are permitted to complete, but new
operations that wish to modify the filesystem are put
to sleep until the suspension is lifted.

We do a check for journal space before each
operation that will change a link count or allocate a
block. If we find that the journal is approaching a full
condition, we suspend the filesystem and expedite the
progress on the soft-updates work-list processing to
speed the rate at which journal entries get retired.As
the operation that did the check has already started, it
is permitted to finish, but future operations are
blocked. Thus,operations must be suspended while
there is still enough journal space to complete opera-
tions already in progress.When enough journal
entries have been freed, the filesystem suspension is
lifted and normal operations resume.

In practice, we had to create a minimal sized
journal (4Mb) and run scripts designed to create huge
numbers of link-count changes, block allocations, and
block frees to trigger the journal-full condition.Even
under these tests, the filesystem suspensions were
infrequent and very brief lasting under a second.

6. TheRecovery Process

The next subsections describe the use of the
journal byfsck to clean up the filesystem after a crash.

6.1. Scanningthe Journal

To do recovery, the fsck program must first scan
the journal from start to end to discover the oldest
valid sequence number. We contemplated keeping
journal head and tail pointers, but that would require
extra writes to the superblock area. Because the jour-
nal is small, the extra time spent scanning it to iden-
tify the head and tail of the valid journal seemed a rea-
sonable tradeoff to reduce the run-time cost of main-
taining the journal. So, thefsck program must dis-
cover the first segment containing a still valid
sequence number and work from there. Journal
records are then resolved in order. Journal records are
marked with a timestamp that must match the filesys-
tem mount time as well as aCRC to protect the valid-
ity of the contents.

6.2. Adjusting Link Counts

For each journal record recording a link
increase,fsck needs to examine the directory at the
offset provided and see whether the directory entry for
the indicated inode number exists on disk.If it does
not exist, but the inode link count was increased, then
the recorded link count needs to be decremented.

For each journal record recording a link
decrease,fsck needs to examine the directory at the
offset provided and see whether the directory entry for
the indicated inode number exists on disk. If it has
been deleted on disk, but the inode link count has not
been decremented, then the recorded link count needs
to be decremented.

Compaction of directory offsets for entries that
are being tracked complicates the link adjustment
scheme presented above. Since directory blocks are
not written synchronously, fsck must look up each
directory entry in all its possible locations.

When an inode is added and removed from a
directory multiple timesfsck is not be able to correctly
assess the link count given the algorithm presented
above. The chosen solution is to pre-process the jour-
nal and link all entries related to the same inode
together. In this way, all operations not known to be
committed to the disk can be examined concurrently
to determine how many links should exist relative to
the known stable count that existed prior to the first
journal entry. Duplicate records that occur when an
inode is added and deleted at the same offset many
times are discarded, resulting in a coherent count.



6.3. Updatingthe Allocated Inode Map

Once the link counts have been adjusted,fsck
must free any inodes whose link count has fallen to
zero. Inaddition,fsck must free any inodes that were
unlinked but still in use at the time that the system
crashed. Thehead of the list of unreferenced inode is
in the superblock as described in section 4.3.The fsck
program must traverse this list of unlinked inodes and
free them.

The first step in freeing an inode is to add all of
its blocks to list of blocks that need to be freed.Next
the inode needs to be zero’ed to show that it is not in
use. Finally, the inode bitmap in its cylinder group
must be updated to reflect that it is available and all
the appropriate filesystem statistics updated to reflect
its availability.

6.4. Updatingthe Allocated Block Map

Once the journal has been scanned, it provides a
list of blocks that were intended to be freed. The jour-
nal entry lists the inode from which the block was to
be freed.For recovery, fsck processes each free record
by checking to see if the block is still claimed by its
associated inode. If it finds that the block is no longer
claimed, it is freed.

For each block that is freed either by the deallo-
cation of an inode, or through the identification
process described above, the block bitmap in its cylin-
der group must be updated to reflect that it is available
and all the appropriate filesystem statistics updated to
reflect its availability. When a fragment is freed, the
fragment availability statistics must also be updated.

7. Performance

Journaling adds extra running time and memory
allocations to the traditional soft-updates requirements
and also additional I/O operations to write the journal.
The overhead of the extra running time and memory
allocations was immeasurable in the benchmarks that
we ran. The extra I/O was mostly evident in the
increased delay for individual operations to complete.
Operation completion time is usually only evident to
an application when it does an ‘‘fsync’’ system call
which causes it to wait for the file to reach the disk.
Otherwise, the extra I/O to the journal only becomes
evident in benchmarks that are limited by the filesys-
tem’s I/O bandwidth before journaling is enabled.In
summary, a system running with journaled soft
updates will never run faster than one running soft
updates without journaling. So, systems with small
filesystems such as an embedded system will usually
want to run soft updates without journaling and take

the time to runfsck after system crashes.

The primary purpose of the journaling project
was to eliminate long filesystem check times.A
40TB volume may take an entire day and a consider-
able amount of memory to check.We hav erun sev-
eral scenarios to understand and validate the recovery
time.

A relatively normal case for developers is to run
a parallel buildworld. Crashrecovery from this case
demonstrates time to recover from moderate write
workload. A 250GB disk was filled to 80% with
copies of the FreeBSD source tree.One copy was
selected at random and an 8 way buildworld pro-
ceeded for 10 minutes before the box was reset.
Recovery from the journal took 0.9 seconds. An addi-
tional run with traditionalfsck was used to verify the
safe recovery of the filesystem.The fsck took approx-
imately 27 minutes, or 1800 times as long.

A testing volunteer with a 92% full 11TB vol-
ume spanning 14 drives on a 3ware RAID controller
generated hundreds of megabytes of dirty data by
writing random length files in parallel before reseting
the machine. The resulting recovery operation took
less than one minute to complete.A normal fsck run
takes approximately 10 hours on this filesystem.

8. Future Work

The next subsection describes some areas that
we have not yet explored that may give further perfor-
mance improvements to our implementation.

8.1. Rollbackof Directory Deletions

Doing a rollback of a directory addition is easy.
The new directory entry has its inode number set to
zero to indicate that it is not really allocated.How-
ev er, rollback of directory deletions is much more dif-
ficult as the space may have been claimed by a new
allocation. Thereare times when being able to roll
back a directory deletion would be very convenient.
For example, preventing the removal of an old name
prior to a new name reaching the disk when a file is
renamed. Here,we have considered using a distin-
guished inode number that the filesystem internally
would recognize as being in use, but that would not be
returned to the user application.However, at present
we cannot rollback deletes, which requires any delete
journaling to be written to disk prior to the writing of
affected directory blocks.

8.2. Truncate and Weaker Guarantees

As a potential optimization, the ‘‘truncate’’ sys-
tem call may choose to instead record the intended file



size and operate more lazily, relying on the log to
recover any partially completed operations correctly.
This approach also allows us to do partial truncations
asynchronously. Further, the journal allows for the
weakening of other soft dependency guarantees
although we have not yet been fully explored these
reduced guarantees and do know know if they provide
any real benefit.

9. NewData Structures

For those with an interest in the details of the
the implementation, this section catalogs the data
structures that have been added to the soft updates
implementation to support the journaling.

9.1. NewDependency Structures

The following structures have been added to the
standard soft updates structures to support the journal-
ing. Thefirst three records fulfill similar roles to the
existing soft updates structures as they track when
their filesystem resource has been written to disk, then
trigger another step in the filesystem operation that
they are tracking.

A freework structure handles the release of a
tree of blocks or a single block. Each indirect block
in a tree is allocated its own freework structure. Each
indirect block may be freed only when all its children
have been freed.Thus, we enforce the rule that an
allocated block must have a valid path to a root that is
journaled.

A freedep structure tracks the completion of a
bitmap write for afreework. One freedep may cover
many freed blocks so long as they reside in the same
cylinder group. When the cylinder group is written,
the freedep decrements the reference count on the
freework which is freed when its reference count
reaches zero.

A sbdep structure tracks the writing of the
superblock that contains the head of the list of inodes
whose names have been deleted, but are still being
held open by a process.This sbdep structure ensures
that the superblock is always pointing at the first pos-
sible unlinked inode for the recovery process.

The remaining nine new dependency structures
are used to track writes to the journal.Typically they
will prevent updates to filesystem data structures until
their tracked journal entry has benn written to the
disk. They are identified with a leading ‘‘j’ ’ in their
name.

A jseg structure tracks the records within a jour-
nal segment. A segment contains all the journal
records written in a single disk write. When all of the

operations associated with the records in that segment
have been committed to disk, thejseg structure allows
its segment to be freed. If its segment is the oldest
valid segment, that segment as well as any unused
segments that follow it are returned for the use of
future journal entries.

A jsegdep structure tracks the validity of a writ-
ten journal record. When all the record’s associated
dependencies have been written to disk, thejseg that
tracks the segment in which it is contained is notified
that it is no longer needed.

A jaddref structure tracks a new reference (link
count) on an inode and prevents the link count
increase and bitmap allocation until a journal entry
has been written.

A jremref structure tracks a removed reference
(unlink) on an inode and prevents the directory
remove from proceeding until the journal entry is
written.

A jmvref structure tracks name relocations
within a directory block that occur as a result of direc-
tory compaction. This information is used by the
recovery code to updated the expected offsets for
added and removed names. Thejmvref prevents the
directory directory block in which the compaction
occurred from being written to disk until the journal
entry is written.

A jnewblk structure tracks a newly allocated
block or fragment and prevents the direct or indirect
block pointer as well as the cylinder-group bitmap
from being written until it is written to the journal.

A jfreeblk structure tracks the journal write for
freeing a block or tree of blocks. The block pointer
cannot be cleared in the inode or indirect prior to the
jfreeblk journal entry being written.

A jfreefrag structure tracks the freeing of a sin-
gle block when a fragment is extended or an indirect
page is replaced. It is only needed if the fragment is
not part of a larger freeblks operation. Theblock
pointer cannot be cleared in the inode or indirect prior
to thejfreefrag journal entry being written.

A jtrunc structure journals the intent to truncate
an inode to a non-zero value. Thejtrunc record must
be written to the journal prior to the synchronous par-
tial truncation process.The associatedjsegdep that
tracks thejtrunc is not released until the truncation is
complete and the truncated inode has been written to
disk.



9.2. Types of Journal Records

The following structures all exist on-disk within
the journal file. Each structure is a uniform size, 32
bytes, which simplifies journal processing.Each jour-
nal record has an opcode that can further refine its
operation. Recordswith more than one opcode have
their opcode noted below.

Every 512 byte disk block starts with ajsegrec
record that may describe more than one block of jour-
nal entries. The jsegrec contains a 64-bit sequence
number and the oldest valid sequence number as
described in section 3. It also has a count of valid
records and blocks along with a timestamp that identi-
fies the mount instance.

A jrefrec record uniquely describes a single link
addition (opcode of JOP_ADDREF) or removal
(opcode ofJOP_REMREF). If the link is transitioning
to or away from zero, it also affects the allocation bit-
map. Itcontains the inode number, parent inode num-
ber, directory offset, starting link count, and file mode.

A jmvrec record describes a relocated directory
entry when its containing directory block is com-
pacted by the kernel. It contains an inode number,
parent inode number, old directory offset and new
directory offset.

A jblkrec record describes either an allocation
(opcode of JOP_NEWBLK) or free (opcode of
JOP_FREEBLK) of a block. It contains an inode num-
ber, logical block number, physical block number, and
frag count. Negative logical numbers indicate
extended attributes or indirect blocks.

A jtrncrec record is used only for partial trunca-
tion where the recovery process must evaluate the cur-
rent size of the inode and complete the truncation.It
contains an inode number, desired file size, and
desired external attribute size.A jtrncrec record is not
used when truncating to zero.Rather, all direct blocks
and root indirects are logged as frees and the inode
pointers are written to zero so that it may all be done
asynchronously.

10. Biographies

Dr. Marshall Kirk McKusick writes books and
articles, consults, and teaches classes on UNIX- and
BSD-related subjects.While at the University of Cal-
ifornia at Berkeley, he implemented the 4.2BSD fast
filesystem, and was the Research Computer Scientist
at the Berkeley Computer Systems Research Group
(CSRG) overseeing the development and release of
4.3BSD and 4.4BSD. His particular area of interest is
the filesystem.He earned his undergraduate degree in
Electrical Engineering from Cornell University, and

did his graduate work at the University of California
at Berkeley, where he received master’s degrees in
computer science and business administration and a
doctoral degree in computer science. He has twice
been president of the board of the Usenix Association,
is currently a member of the editorial board of ACM’s
Queue magazine, and is a member of the Usenix
Association and ACM, and is a senior member of the
IEEE.

In his spare time, he enjoys swimming, scuba
diving, and wine collecting.The wine is stored in a
specially constructed wine cellar (accessible from the
web at http://www.mckusick.com/˜mckusick/) in the
basement of the house that he shares with Eric All-
man, his domestic partner of 30-and-some-odd years.
You can contact him via email at<mcku-
sick@mckusick.com>.

Jeff Roberson is a consultant who lives on the
island of Maui in the Hawai’ian island chain.When
he is not cycling, hiking, or otherwise enjoying the
island, he gets paid to improve FreeBSD. He is partic-
ularly interested in problems facing server installa-
tions and has worked on areas as varied as the kernel
memory allocator, thread scheduler, filesystems inter-
faces, and network packet storage among others.You
can contact him via email at<jrober-
son@jroberson.net>.

References

Ganger, McKusick, & Patt, 2000.
G. Ganger, M. McKusick, & Y. Patt, “Soft Updates:
A Solution to the Metadata Update Problem in
Filesystems,”ACM Transactions on Computer Sys-
tems 18(2), p. 127−153 (May 2000).

Ganger & Patt, 1994.
G. Ganger & Y. Patt, “Metadata Update Performance
in File Systems,” USENIX Symposium on Operating
Systems Design and Implementation, p. 49−60
(November 1994).

McKusick, Bostic, Karels, & Quarterman, 1996.
M. McKusick, K. Bostic, M. Karels, & J. Quarter-
man,,The Design and Implementation of the 4.4BSD
Operating System, p. 269−271, Addison Wesley Pub-
lishing Company, Reading, MA (1996).

McKusick, 2002.
M. K. McKusick, “Running Fsck in the Back-
ground,” Proceedings of the BSDCon 2002 Confer-
ence, pp. 55-64 (February 2002).

Seltzer et al, 2000.
M. Seltzer, G. Ganger, M. K. McKusick, K. Smith,
C. Soules, & C. Stein, “Journaling versus Soft
Updates: Asynchronous Meta-data Protection in File
Systems,”Proceedings of the San Diego Usenix Con-
ference, pp. 71-84 (June 2000).


