
9 th European BSD Conference (EuroBSDCon 2010)
Karlsruhe, Germany, October 8–10, 2010.

What Functional Programming Can Do for
FreeBSD and Vice Versa? ∗

Gábor PÁLI1, Giuseppe PILICHI2, Ashish SHUKLA3

Department of Programming Languages and Compilers,
Eötvös Loránd University,

The FreeBSD Project
1 pgj@FreeBSD.org 2 jacula@FreeBSD.org 3 ashish@FreeBSD.org

Abstract

In the last decades, scene of functional programming has changed dramati-
cally as many new compilation and programming techniques were introduced,
and then became available. Many research efforts put into development of
better languages and compilers is focused in Haskell, a standardized, general-
purpose, lazy, pure functional language. It supports several features to make
today’s software engineering easier with a minimal loss in performance. This
paper investigates the possibilities on how to employ these features in sup-
porting the development of an “unknown giant among free operating systems”,
namely FreeBSD. On the other hand, FreeBSD, as a descendant of AT&T
UNIX via the Berkeley Software Distribution, represents reliable and stable
UNIX-compliant internals and system APIs, which might help to keep devel-
opment of the de facto standard Glasgow Haskell Compiler in a reasonably
good shape. We believe that these open source projects would be able to help
each other in a promising way.

Keywords: Functional Programming, Operating Systems, Software Engineer-
ing, Static Analysis, Haskell, Software Portability

1. Introduction

Programming languages with static typing tends to be more secure, reliable,
and robust, albeit sometimes they are also harder to master. Development seems
to be even more difficult when a programming language is also pure, i.e. it tries to
isolate and control side effects of computations. However, it encourages software
developers think in a different way, focusing on the solution in a rather abstract
way, most of the time in terms of mathematical or computer science concepts. By
abstracting away from the details of gritty details of implementation, very quick

∗Supported by POSDRU/6/1.5/S/2008

1

2

prototyping becomes possible with many of the boilerplate work generated or added
automatically.

We are confident that Haskell represents a great power in the right hands that
can efficiently support real-world software engineering. But it can only be accessed
if it is ported and carefully prepared for daily use. Beyond porting and packag-
ing, we present a detailed case study on how to turn Haskell into a valuable tool
for FreeBSD in this paper. Contributions of our work presented here could be
summarized as follows.

– We have recently started to support the development of the Glasgow Haskell
Compiler directly, and therefore we have earned many interesting experiences
in making its implementation more robust and more compatible with stan-
dards (Section 2.1).

– A preliminary framework for porting Haskell Cabal packages has been also
introduced, featuring hsporter (Section 2.2). This tool directly translates
Cabal descriptions to ports. These are then tested, packaged, and distributed
using the well-established methods in the FreeBSD Project, resulting in a
stable binary package support.

– Haskell might be a good candidate for building static analysis tools, because
it is a high-level language and sources compiled to native code compete with
speed of decent C implementations while the time spent of development is
shorter and the reliability of the resulted program is better. We show an
example of this (Section 3).

2. FreeBSD in Development of Haskell

The Glasgow Haskell Compiler, also known as GHC, is the most supported and
sophisticated Haskell compiler to date. It also represents the de facto standard
for the Haskell programming language. GHC and Haskell are under continuous
research and development, and the goals include high-performance implementation
of concurrency and parallelism [1]. There is an active community around the lan-
guage, and more than 2,200 third-party open source libraries and tools are available
in the on-line package repository, called Hackage [2]. GHC is both an interpreter
and a native-code compiler that runs on many platforms, including FreeBSD.

Haskell is increasingly being used in commercial applications, and GHC is often
serves as a testbed for advanced functional programming features and optimiza-
tions. There are many popular Haskell software, for instance Darcs, a revision
control system with several innovative features, xmonad, a tiny window manager
for the X Window System, pandoc, a swiss-army knife for converting between many
widely-used markup formats, and various web frameworks, like Snap or Happstack,
competitors to classical web servers. Note that most of these software are already
present in the FreeBSD Ports Collection. There are companies behind the devel-

3

opment of Haskell, for example Galois, which develops high assurance software for
demanding applications, and it currently runs Hackage.

2.1. Porting the Haskell Compiler

At the moment, GHC is mainly developed on Linux, Windows, and Mac OS
X under the 3-clause BSD license. It has a FreeBSD port since August 1999, and
amd64 support on FreeBSD was introduced by porting version 6.8.3 in July 2008. It
has been updated to version 6.10.4 in September 2009. From the beginning of 2010,
upstream patches from FreeBSD developers have started to appear, and support
for dynamic libraries on FreeBSD have been added to version 6.12.1. In April
2010, FreeBSD has become a Tier 1 (actively sponsored) level platform of GHC by
offering vanilla binary 6.12.x distributions for FreeBSD 8.X and 7.X systems.

We have installed builder clients for the Glasgow Haskell Compilation System
on FreeBSD 8.0-RELEASE i386 and amd64 systems. These builders are written in
Haskell, and they are controlled from Galois in order to provide nightly builds of
GHC for their development (-HEAD) and release (-STABLE) branches. The develop-
ment of GHC happens in a Darcs repository, which is checked out on each occasion
and a daily snapshot is built and tested against a compiled test suite, maintained
by the developers. The results of these tests help to show the problems springing
up in the daily development, and they are also good indicators of usability on the
supported platforms. The test suite also plays an important role in the so-called
validation process which consists of applying a patch (usually a modification sent
by contributors) and performing a test build, running the tests to check for cor-
rectness. Daily binary snapshots are useful for users who want to try the latest,
cutting-edge version of the compiler without requiring them to compile the sources
ourselves. Builds of -STABLE are used for publishing purposes, since a GHC release
is just a carefully selected, automatically packaged snapshot of that branch.

Some parts of the compiler and the accompanying run-time system are written
in C, but an existing Haskell compiler is used for bootstrapping the compilation.
These bootstraps are present in form of pre-built tarballs for each major FreeBSD
versions. There is an alternative compilation method that does not involve an-
other Haskell compiler and based on using a C compiler only, but it is not usable
at the moment. GHC has a refined build system, based on Perl, GNU autoconf,
make, and Python 2.6. It is very developer-friendly, and it is easy to use, how-
ever sometimes we needed to put in a word against the creeping Linuxisms in the
sources that caused the implementation of build scripts to move towards Perl. We
had problems with respecting the non-standard installation prefixes, including the
default /usr/local/ directory on FreeBSD systems. It must be also noted that
C sources use ISO C99 with POSIX extensions, but inconsistencies between GNU
libc and FreeBSD libc did not allow us to define the corresponding macro settings
in a uniform way. GHC performs several handcrafted optimizations on the GCC
output to make the resulted assembly code more efficient (referred to as mangling)
which is a relatively fragile part of the entire build process. C code compilation
also tries to make use of visibility pragmas present in recent GCC versions, but it

4

is failing to work with the FreeBSD system compiler so far.
According to the test case failures, the FreeBSD port of GHC still lags a bit

behind the Linux version, but it has definitely improved in the last months, and
hopefully this tendency will continue in the future. Note that FreeBSD seems to
be more strict than Linux in many aspects, which might mean that there are still
hidden problems even in that version. It is supported by a bug which was found
in the garbage collector and lead to an excessive memory leak on FreeBSD but not
on Linux. In summary, GHC is up-to-date and usable on FreeBSD.

2.2. Porting Haskell Cabal

Haskell comes with many third-party packages to extends its functionality,
called Cabal packages or hackages for short. These hackages usually contain li-
braries or modules supporting software development in Haskell, but one might find
complete applications wrapped in such packages. Cabal is a standard Haskell li-
brary that comes with GHC, and it has an optional user interface, cabal-install
that might be considered a package manager in the Haskell world, although it does
not fulfill all standard expectations. For example, it does not support removal of
the previously installed packages, and it only works by compilation of source code.
On the other hand, it is able to handle dependencies, and maintains a central
package list together with a used-based database of persistently stored versions,
supports various build modes and generation of documentation (via the Haskell
documentation tool, haddock). Therefore it is indeed a handy utility in addition
to the advanced multi-source compilation mechanism of GHC, which makes use of
Makefiles unnecessary.

2.2.1. Translation

We have started to build a framework around the features implemented by Ca-
bal, and we recently introduced a BSD make include files in the Ports Collection,
bsd.cabal.mk and bsd.hackage.mk respectively, to support direct transcription
of Cabal package descriptions to FreeBSD ports. (They can be checked out from
the FreeBSD Project’s CVS repository.) By using the aforementioned include files,
size and complexity of Haskell Cabal ports have been reduced to a manageable
level. We have written a tool in Haskell, called hsporter [3], that is capable of al-
most automatic production of complete FreeBSD ports out of package descriptions.
The development of hsporter and bsd.cabal.mk is in progress to cover package
descriptions correctly while respecting the established traditions in the FreeBSD
Ports Collection during the translation. Based on these files, we are also able to
run automatic periodic checks to be notified on version changes.

Wrapping is being implemented in bsd.cabal.mk. At the moment, it takes
care of controlling the process of installation, invocation of haddock and hscolour
for generating documentation on demand, resolving Cabal dependencies to port
dependencies, providing the correct package naming and directory paths. The
task of the hsporter tool is just to create the corresponding Makefile, distinfo,

5

pkg-descr, and pkg-plist files, along with placing the port in the right category.
This approach helps us to avoid bloating in ports, although the required logic can
be generated by hsporter. Making use the Ports Collection better also results in
easy-to-overview ports without demanding knowledge of Haskell.

For example, if we want to port the TypeCompose hackage, we will need to issue
only one command (Figure 1). This will generate the devel/hs-TypeCompose di-
rectory, containing the port. Obviously, manual checks and refinements are always
recommended, but as it can be seen here, vast of the porting work boilerplate is
automatically done. Note that it might be improved further to be correct by gener-
ation, i.e. instead of checking for correctness of the result, the quality of translation
itself will directly determine the quality of the port.

$ hsporter http://hackage.haskell.org/packages/archive/TypeCompose/0.8.0/TypeCompose.cabal devel
Fetching http://hackage.haskell.org/packages/archive/TypeCompose/0.8.0/TypeCompose.cabal...
Fetching http://hackage.haskell.org/packages/archive/TypeCompose/0.8.0/TypeCompose-0.8.0.tar.gz...
Creating directory devel/hs-TypeCompose...
Conversion in progress... [Makefile distinfo pkg-descr pkg-plist]
Do not forget to do a ’portlint -C’

Figure 1: Porting the TypeCompose hackage with hsporter.

2.2.2. Packaging

An own custom Ports Tinderbox is installed to do quality assurance and build
binary packages for all active FreeBSD branches on both i386 and amd64 archi-
tectures. This way we can work around the missing binary package and uninstall
support of Cabal while carefully engineering the results. All ported hackages are
tested and therefore guaranteed to work with the GHC in the ports tree. This
requires us to write patches against the original upstream version sometimes, be-
cause certain modules cannot work with each other or the in-tree GHC without a
little bit of fine-tuning.

pkg_add -r hs-TypeCompose
Fetching ftp://ftp.freebsd.org/pub/FreeBSD/ports/amd64/packages-8-stable/Latest/hs-TypeCompose.tbz... Done.
Reading package info from stdin ... done.
Writing new package config file... done.

Figure 2: Installing the ported binary package of TypeCompose.

This set of FreeBSD-ported hackages can be seen as an informal “FreeBSD
Haskell Platform” at the user’s service. Using the package distribution network
of the FreeBSD Project, anyone can install and update GHC together with the
important Cabal packages quickly (Figure 2). However, there is an on-going stan-
dardization process amongst important third-party packages, under the name of
“Haskell Platform”. It incorporates only a relatively small but fundamental subset
of hackages, including cabal-install, and all the other hackages can be installed
via it. We are trying to avoid enabling the users to use Cabal directly as it in-
terferes with the Ports Collection at the moment, but it might be possible to use

6

Haskell Platform on FreeBSD as an alternative solution. The latter would be pos-
sibly preferred by professional bleeding edge Haskell users who do not want to wait
for the FreeBSD version of packages.

3. Static Analysis of the FreeBSD Ports Collection

With growing number of ported modules and a maintained port of the com-
piler, Haskell slowly goes unleashed on FreeBSD, only waiting for to be applied in
practice. Because of its interpreter front-end, the GHC interactive environment,
called GHCi, development in Haskell is easy and simple as it allows on-line con-
struction and debugging of programs. It is not even mandatory to compile Haskell
sources, programmers can write scripts to be run with the runhaskell command,
and the same program can be compiled to native code for efficiency, which is a
great method of prototyping and solving problems.

3.1. Ports as a Graph

An example of such a program might be a reverse dependency calculation be-
tween FreeBSD ports. The authors found this program quite useful when they had
to determine which ports are affected by modifying a given one in order to test the
change in question properly. The discussed program calculates all affected ports,
i.e. clusters the ports in the tree having a build dependency on the touched one.

A

B G

CD

E

(a) Normal port graph with
build dependencies.

A

B G

CD

E

(b) Reversed port graph with
build dependents.

A

B G

CD

E

(c) Calculated effect of port
E.

Figure 3: Ports and their dependency relations represented in a graph.

It uses the dependency information given in the ports’ Makefiles, referred to as a
describe file that can be generated by invoking the describe target for all FreeBSD
ports. This make(1) target builds up a description line for the given port, including
its build- and run-time dependencies. We used only the build dependencies in the
program so far. One might have the intuition that it is enough to grep(1) over

7

these lines to find the corresponding ports, but note that determining all the ports
requires a more precise solution, like tracking indirect dependencies between ports,
which would result in a more complicated and rather inefficient implementation.
We feel important to make this difference to have the correct testing coverage. Some
build dependencies (typically shared libraries) might be built, but it cannot be told
whether their dependencies will be able to build as well. It can be seen that this
leads to checking arbitrary level of reverse dependencies that be can represented as
a sub-tree.

Thus the Haskell implementation is based on the assumption that the Ports
Collection can be represented as a directed acyclic graph, where ports are the
nodes, and edges are the dependency relations (Figure 3). Fortunately, a graph
module, Data.Graph [4] is immediately at the implementers’ hands as it can be
found the base Haskell libraries. Hence all we have to do is to parse the describe
file, turn the ports tree into a graph, and query which nodes can be reached from
the one representing the changed port. The complete source code can be reached
at [5], some implementation details are omitted for the sake of simplicity.

type Name = String
type BuildDependencies = [Name]
type Port = (Name, BuildDependencies)
type Ports = [Port]
type PortGraph = Graph

Figure 4: Basic abstractions for solving the problem.

Building the program is surprisingly intuitive. We only need to pick the right
abstractions (Figure 4). Here comma-separated items in parentheses are tuples and
items in square brackets are lists of elements of the same type. That is a port is
written as a binary tuple of a name and build-time dependencies (as list of names),
and ports as list of such tuples. Graph is just an abstract data type. We defined a
|> operator to introduce a data-flow-style programming: there are “pipes” created
in the program similar to the UNIX pipes, but these ones are strongly typed, i.e.
their invalid combinations result in compile-time errors. Pipe elements might be
also “fused” together during the compilation, which is a source of efficiency. There
is also a dot (.) operator, which is technically the same, but it combines functions
in a reverse order, and it is more handy in certain cases. As a result, the source
code gets a shell-script-like look, however, this is not only style of writing Haskell
programs.

With the powerful pattern matching facilities of Haskell, reading the file be-
comes trivial. The portify function (Figure 5) takes a describe file as an argu-
ment in binary format, and breaks into individual lines by lines, and turns every
line into a port by toPort. Note that since there is no computational dependency
between the operations, it can be even done in parallel. The processing function
called toPort matches a pattern on its argument (a list of fields received from

8

portify describe
= describe |> lines |> map toPort
where

toPort line = line |> split ’|’ |> parse
parse (package : path : prefix : comment : pkgdescr :

maintainer : categories : _ : _ : _ : bdepends :
rdepends : www : _) = (name, builddeps)

where name = convertPath category path
category = firstOf categories
builddeps = extract bdepends
firstOf = head . split ’ ’
extract = map (convertPath category) . split ’ ’

Figure 5: Parsing the describe file: the portify function.

split) and lifts the required information, name and builddeps. Here we construct
the former out of the primary category and the name of the port, and the latter
out of list of dependencies.

generateGraph ports
= ports |> map toEdges |> graphFromEdges
where toEdges (name, deps) = (name, name, deps)

Figure 6: Building a graph: the generateGraph function.

The graph can be generated from the list of ports, using the graphFromEdges
function (Figure 6) with a toEdges helper function, which doubles the name field:
first it is a label for the node, second it is vertex. Dependency calculation is defined
by the depends function (Figure 7). It simply calls the reachable function to
cluster the affected nodes, and it uses two helper functions to convert between the
internal representation of the graph (fromVertex and toVertex, respectively).

depends graph port fromVertex toVertex
= vertexed |> reachable graph

|> map (translate . fromVertex) |> sort
where

vertexed = port |> toVertex |> Data.Maybe.fromJust
translate (name,_,_) = name

Figure 7: Calculating dependents: the depends function.

Finally, main combines the introduced functions in a sequential, imperative
style. It gets the command line arguments, assigns them to the corresponding

9

names (describe and port), reads the file, builds the graph, transposes (reverses)
it, and collects the members of the cluster. As a last step, concatenates the list of
port names into one string with unlines and prints it.

main = do
args <- getArgs
let describe = args !! 0
let port = args !! 1
contents <- readFile describe
let (h,f,g) = contents |> portify |> generateGraph
let graph = transposeG h
depends graph port f g |> unlines |> putStrLn

Figure 8: Combining everything: the main function.

3.2. Evaluation of Costs

As it can be seen, the written code is abstract, captures the problem to be
solved by a concrete mathematical concept. It is easy to understand as well as to
maintain. According to our measurements (Figure 9), it is also efficient to run, since
it is only 2 times slower than the corresponding implementation in C [6] when it is
compiled to native code. The performance evaluation was done with time(1) on
an Intel Core2 Quad CPU Q8400 @ 2.66GHz running FreeBSD/amd64 8-STABLE.
We used the FreeBSD port of GHC 6.12.3 and the FreeBSD system compiler, GCC
4.2.1 with compiler optimizations (-O for GHC, -O2 for GCC) enabled. The C
version uses portions of the make_index utility for portsnap(8) and the ported
version of the igraph library (version 0.5.3)1. The result length is approximated
because it depends on the actual state of the ports tree. It does not seem to affect
on the performance, it is presented for demonstration purposes only.

The sources were measured by sloccount(1)2 (version 2.26, default settings),
where the difference in cost of implementation is conspicuous: the Haskell version
is below 100 lines (SLOC: 67) while the C version is above 400 lines (SLOC: 433).
Theoretically, while the C version would take a month to be developed by a single
person, the Haskell version would take only about 4 days, costing nearly 7 times
less. (As a matter of fact, it took a day for the authors.)

Speed of the Haskell implementation clearly half of the C one in every aspect.
There is no definite bottleneck, the ratio can be taken constant. It is possibly caused
by the difference in the run-time systems and graph implementations, and the fact
that Haskell programs do not contain variables. Every variable-like entity in the
source code is just a name of an expression, i.e. Haskell works with immutable
values. This is where the reliability of the code comes from: no value will be

1http://igraph.sourceforge.net/
2http://www.dwheeler.com/sloccount/

10

overwritten as there is no assignment in the language. This remarkable difference
sometimes makes harder to build efficient implementations, but it also a strong
guarantee of correctness and reliability.

Query Ports Haskell C
Total Real Sys Total Real Sys

devel/gettext 11164 1.36 1.27 0.09 0.64 0.59 0.05
devel/gmake 10947 1.34 1.25 0.09 0.64 0.59 0.05
graphics/png 4577 1.28 1.19 0.09 0.62 0.57 0.05
lang/ghc 145 1.32 1.21 0.09 0.61 0.56 0.05
math/gmp 972 1.24 1.15 0.09 0.61 0.56 0.05

Figure 9: Average execution times for specific queries.

3.3. Potential Uses
This simple tool can be used in many different ways to assist the work in the

FreeBSD Project. Some examples are as follows. There might be similar checks
added in the future, based on this concept or by building other static analysis
frameworks in Haskell.

– It can be guaranteed that all the ports will be checked if the resulted list of
ports are tested for package building. This is how it is usually done with the
so-called “exp runs” at the FreeBSD package building cluster to determine
the potential problems with a given change in the ports tree. By limiting
the number of ports to be tested to the ones that really need testing, an
exp run might be shortened, and it also might allow the developers to test
similar huge changes themselves without wasting the valuable resources of
the package building cluster. We already use this tool to do “mini exp runs”
for Haskell ports (i.e. testing about 150 ports as time of writing) to ensure
that updates will not break anything in the ports tree, or re-basing of ported
hackages to a new GHC is correct.

– Recently it has also proved to be useful in checking whether a port is feature
safe3, since it is just enough to tell many ports are affected by changing the
port in question, and set a sensible limit on that (e.g. less than 5). It might
be part of the pre-commit check and help to notify the committers, even
replacing the current solution.

– It might be integrated to various package building scheduling algorithms. It
can be used in QA Tindy4 to decide what to build to test not only the port
itself but its dependent ports, or it can be used in the real package building
cluster.

3A restriction applied on ports during preparation of FreeBSD releases.
4A quality assurance suite for FreeBSD ports.

11

4. Related Work

Porting the Glasgow Haskell Compiler is in progress for other related platforms,
including Mac OS X, OpenBSD, NetBSD, DragonFly BSD, and Solaris with many
of them having their own builder clients. To our knowledge, only OpenBSD offers
explicit support for porting Haskell Cabal. The original concept of automatic con-
version to a given package format comes from Olivier Thauvin, who implemented
cabalmdvrpm to provide packages for Mandriva. It was followed by other similar
porter tools for Red Hat Linux, Arch Linux, Gentoo Linux, Slackware Linux, De-
bian Linux, so today many popular Linux distributions support hackages in some
form. As these solutions are for Linux and most of the hackages are being developed
on Linux, they are usually not required to patch the sources in order to make them
work. In case of FreeBSD, every freshly imported hackage needs to be checked for
building and patched on demand, i.e. it is ported and not simply packaged that
cannot be completely automated.

Haskell is already employed in development of operating systems, most notable
examples include Linspire, where engineers have been using functional program-
ming in the following tasks: hardware detection and configuration, creation of in-
stallation CDs, and internal CGI/web applications. Much of this work was done in
O’Caml, but as of April 2006, the developers standardized on Haskell. The Haskell
Graphical Interface for Emerge (Himerge) for Gentoo Linux also offers calculating
reverse dependencies and fast indexing of packages information. The API for a
new iteration of the L4 microkernel, called seL4 is represented by an executable
specification [7] written in Haskell. It is the first-ever general-purpose operating
system kernel that has been verified formally.

5. Conclusions

We believe that the presented results are not unique to Haskell as they might
be applied in merging any software distribution set to the Ports Collection. Trans-
lation and wrapping foreign package formats are often needed, and making them
automatic and automatically correct is a key to success in properly maintaining
a large number of ported packages. Primarily due to the higher level of abstrac-
tion and language capabilities of Haskell, we are confident that it is quite suitable
for writing various high-performance tools quickly. The development of Haskell is
surrounded by a very active and supportive community, it is open and there are
many tutorials, therefore anybody can learn it. Fortunately, porting the flagship
Glasgow Haskell Compiler is free from serious problems, and the builder clients are
doing a great job in keeping an eye on occasionally introduced Linuxisms in the
sources.

Finally, we would like acknowledge the support of the FreeBSD Donations Team
(Daniel Seuffert), the Programul Operaţional Sectorial Dezvoltarea Resurselor U-
mane 2007-2013 (POSDRU/6/1.5/S/3-2008). We would like to thank Alexey
Dokuchaev and Gábor Kövesdán for their valuable comments, and Maxime Hen-

12

rion, Oliver Braun, Volker Stolz, and Simon Marlow for their work on porting the
Glasgow Haskell Compiler to FreeBSD.

References

[1] Marlow, S., Peyton Jones, S., Singh, S. Runtime Support for Multicore Haskell
ACM SIGPLAN International Conference on Functional Programming, Edinburgh,
United Kingdom. September 2009.

[2] HackageDB. http://hackage.haskell.org/, August 2010.

[3] Repository of hsporter. http://code.haskell.org/˜pgj/projects/hsporter/,
April 2010.

[4] King, D.J., Launchbury, J. Lazy Depth-First Search and Linear Graph Algorithms
in Haskell, Glasgow Workshop on Functional Programming, 1994.

[5] http://www.freebsd.org/˜pgj/eurobsdcon2010/depcalc.hs

[6] http://www.freebsd.org/˜pgj/eurobsdcon2010/depcalc.c

[7] Derrin, P., Elphinstone, K. et al. Running the Manual: An Approach to High-
Assurance Microkernel Development ACM SIGPLAN Haskell Workshop. Portland,
Oregon. pp. 60–71, September 2006.

